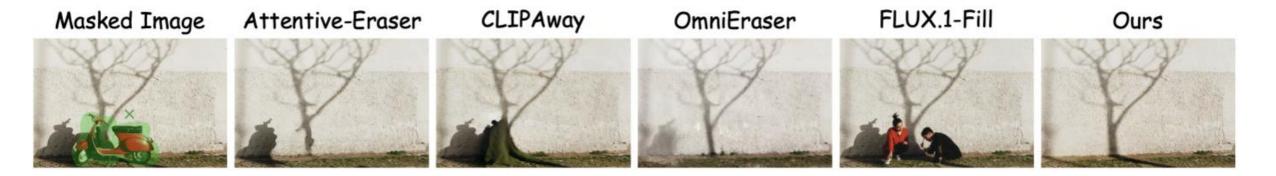


GEOREMOVER: REMOVING OBJECTS AND THEIR CAUSAL VISUAL ARTIFACTS


Zixin Zhu^{1,2}, Haoxiang Li², Xuelu Feng¹, He Wu², Chunming Qiao¹, Junsong Yuan¹

¹University at Buffalo, ²Pixocial Technology

Background

Task: Object Removal vs. Inpainting

- Inpainting: only fills the masked region.
- Object Removal: removes a specific object in the masked region and also preserves outsidemask consistency (no new objects, no lighting or edge mismatches).

Observation

Training: Mask Area = Edit Area

Edit Area (Masked Object Area)

Mask Tells Edit Areas

Causal Visual Artifacts

(a) Strictly Mask-aligned Training

Training: Mask Area ≠ Edit Area

Edit Area 1 (Masked Object Area)

Mask cannot Tell Edit Areas

Edit Area 2 (Unmasked Shadow Area)

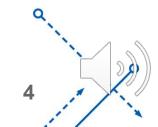
(b) Loosely Mask-aligned Training

Direct paired supervision blurs what to remove vs. what to preserve.

Motivation



Visual effect (Images)

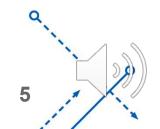


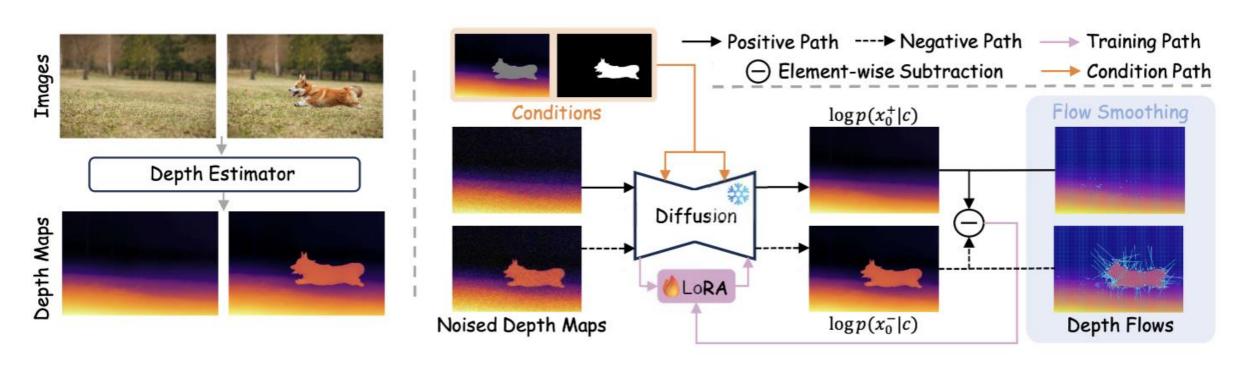
Causal view: object geometry (cause) → outside-mask artifact fields (effect: shadows, reflections, contacts).

Geometry (depth maps)

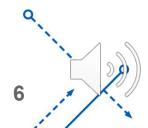


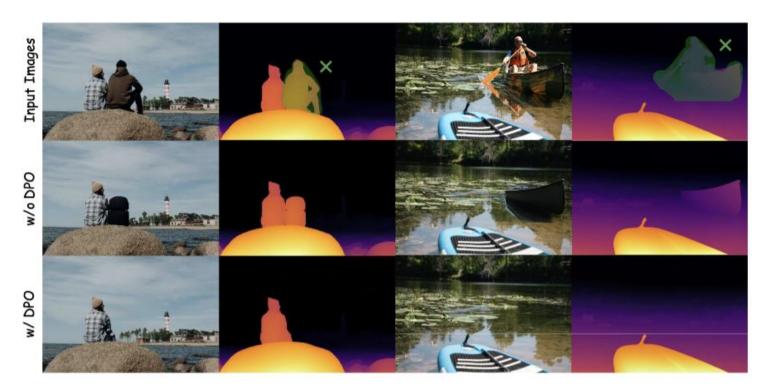
Motivation



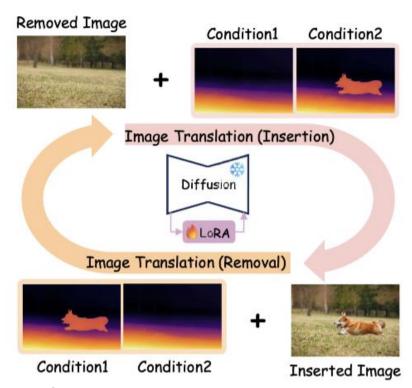

Method. We recast object removal as a causal two-stage pipeline: (1) **geometry removal**—modify scene geometry (e.g., depth) to excise the object; (2) **appearance rendering**—resynthesize the image from the updated geometry so shadows/reflections disappear.

Benefits. The geometry stage supports strictly mask-aligned, well-posed supervision (no unintended outside-mask edits), and the rendering stage naturally removes object-induced artifacts while preserving nearby content, learned from paired data that links objects to their effects.





The training framework of Stage 1: Geometry Removal.



Effect of direct preference optimization (DPO) in Stage 1.

Stage 2: Appearance rendering.

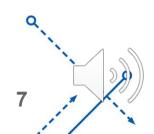


Table 1: Comparison with state-of-the-art methods on RemovalBench and RORD-Val.

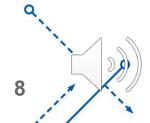

Mathad	RemovalBench				RORD-Val					
Method	FID↓	CMMD .	↓ LPIPS ↓	PSNR ↑	$AS \uparrow$	FID↓	CMMD ↓	LPIPS ↓	PSNR ↑	$AS \uparrow$
ZITS++ [41]	108.38	0.374	0.158	19.62	4.56	107.44	0.448	0.274	21.17	4.12
MAT [19]	123.78	0.366	0.164	17.88	4.51	136.53	0.455	0.281	19.18	4.38
LaMa [<u>42]</u>	99.88	0.351	0.156	18.72	4.55	100.21	0.294	0.229	20.50	4.23
RePaint [20]	102.65	0.741	0.378	19.86	4.38	114.64	2.345	0.525	17.68	4.71
BLD [43]	128.66	0.553	0.233	17.43	4.39	224.61	0.862	0.273	17.13	4.74
LDM [7]	108.79	0.365	0.157	19.24	4.47	128.19	0.506	0.221	19.02	4.12
SD-Inpaint [7]	119.60	0.419	0.274	17.02	4.48	143.69	0.494	0.308	16.83	4.61
SDXL-Inpaint [7]	104.97	0.398	0.187	17.87	4.63	147.01	0.460	0.210	17.69	4.76
BrushNet [35]	120.97	0.549	0.191	18.68	4.63	234.87	0.745	0.293	16.51	4.41
FLUX.1-Fill [<u>8]</u>	115.79	0.487	0.193	17.12	4.59	141.39	0.450	0.217	18.50	4.55
PowerPaint [44]	114.55	0.392	0.240	18.25	4.56	102.33	0.408	0.241	18.29	4.38
CLIPAway [5]	108.40	0.272	0.254	18.78	4.48	81.28	0.545	0.278	16.36	4.19
Attentive-Eraser [45]	55.49	0.232	0.146	20.60	4.50	96.77	0.233	0.221	20.24	4.77
OmniEraser [9]	39.52	0.208	0.133	21.11	4.66	43.71	0.153	0.166	22.13	4.99
Ours	29.88	0.089	0.124	25.52	4.54	31.15	0.182	0.103	23.70	4.69

Table 2: Ablation study on RORD-Val to evaluate the effectiveness of our design components. "Insert." denotes the percentage of cases where a new object is wrongly inserted into the removal region.

Method	$ FID \downarrow CMMD \downarrow LPIPS \downarrow PSNR \uparrow AS \uparrow Insert. \downarrow$							
			0.315					
Two-Stage w/o DPO	34.24	0.230	0.131	22.81	4.51	5.09%		
Two-Stage w/ DPO	31.15	0.182	0.103	23.70	4.69	1.48%		

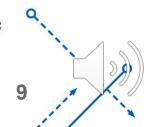
Table 3: Geometry removal accuracy (MAE in masked region) on RORD-Val.

Method	MAE↓		
Input depth	0.0827		
Two-Stage w/o DPO	0.0490		
Two-Stage w/ DPO	0.0387		

causal artifacts on CausRem.

Method	IoU%↑			
OmniEraser [9]	68.29			
Ours	73.76			

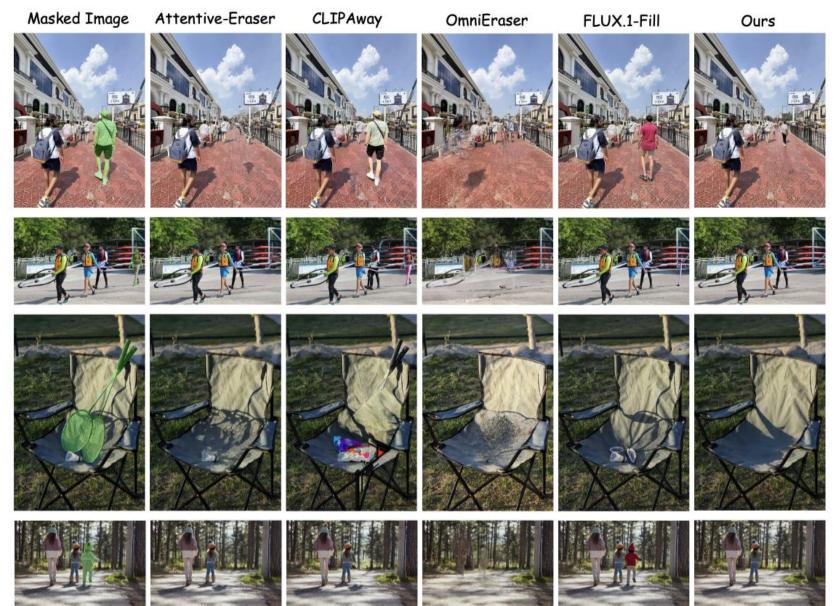
Table 4: Removal performance of Table 5: Ablation study on the RORD-Val dataset comparing unidirectional and bidirectional rendering strategies in Stage 2.

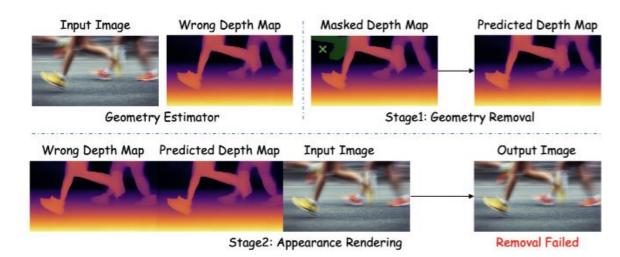

Method	FID↓	CMMD	↓ LPIPS 、	PSNR 1	AS↑
Unidirectional rendering	38.43	0.215	0.136	23.58	4.19
Bidirectional rendering	31.15	0.182	0.103	23.70	4.69

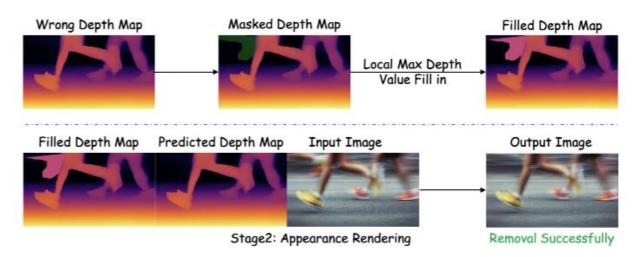
(a) Results from our one-stage model.

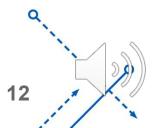
(b) Results from our two-stage model

Figure 4: Comparison between our one-stage and two-stage object removal strategies. Two-stage design improves edit quality by separating geometry reasoning from appearance generation.

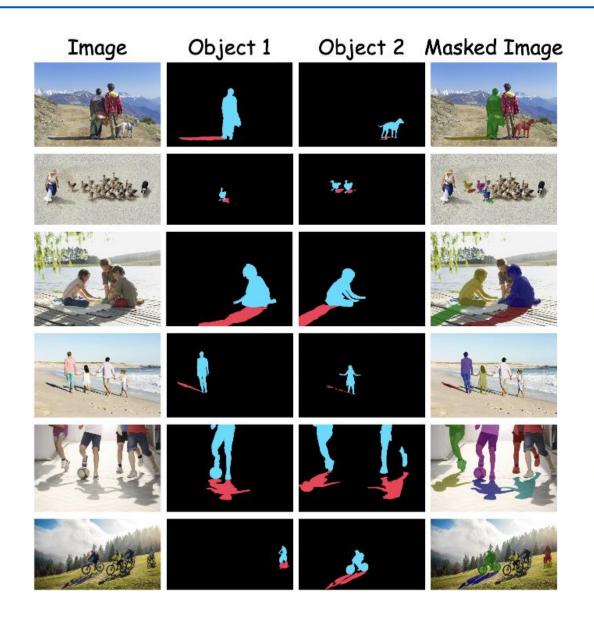





Failure Cases



(a) Failure cases under motion blur conditions.


(b) Improved results after applying Fill-in strategy.

Datasets

Pixocial

Conclusion

We propose a **geometry-aware**, **two-stage framework** that rethinks object removal as a causal process: first **remove the object in geometry space** (depth) under strictly mask-aligned supervision; then **render the appearance from the updated geometry**, so shadows/reflections are naturally cleared while preserving outside-mask content. A DPO-style preference loss stabilizes depth editing and suppresses spurious structure insertions.

Our contributions are three-fold:

- •Decoupled pipeline: a scalable two-stage design—geometry removal → appearance rendering—that separates structure reasoning from pixel synthesis.
- •Controllable geometry editing: strictly mask-aligned training with a preference-guided (DPO-style) loss to avoid unwanted insertions and ensure well-posed supervision.
- •Causal artifact removal & SOTA results: geometry-conditioned rendering (with bidirectional training) that removes outside-mask causal artifacts and achieves state-of-the-art performance on RemovalBench/RORD-Val and higher IoU on CausRem.

Thank You!