

Physics-informed Reduced Order Modeling of Time-dependent PDEs via Differentiable Solvers

Nima Hosseini*, Hesam Salehipour, Adrian Butscher, and Nigel Morris

*Computer Science PhD Student at Western University Research conducted during internship at Autodesk

Accelerated (Real-time?) Simulation

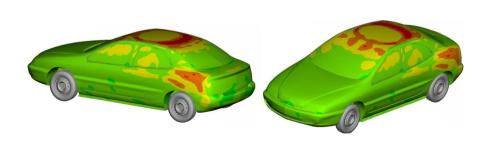
Many-query problems rely on exploring the solution manifold of governing PDEs

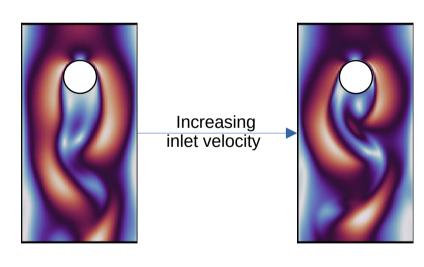
- Design optimization
- Optimal control
- Inverse problems

Accelerated (Real-time?) Simulation

Many-query problems rely on exploring the solution manifold of governing PDEs

- Design optimization
- Optimal control
- Inverse problems

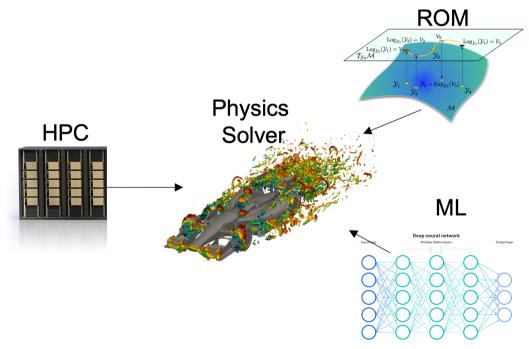




Accelerated (Real-time?) Simulation

Many-query problems rely on exploring the solution manifold of governing PDEs

- Design optimization
- Optimal control
- Inverse problems



For time-dependent parameterized PDE:

$$\dot{u} = \mathcal{N}(u; \beta), \quad u(t, x) : \mathcal{T} \times \Omega \to \mathbb{R}^m,$$

Find:

1. A reduced latent space with latent coordinates $\alpha_t \in \mathbb{R}^k$, corresponding to solution states u_t in the physical space at time t.

For time-dependent parameterized PDE:

$$\dot{u} = \mathcal{N}(u; \beta), \quad u(t, x) : \mathcal{T} \times \Omega \to \mathbb{R}^m,$$

Find:

- 1. A reduced latent space with latent coordinates $\alpha_t \in \mathbb{R}^k$, corresponding to solution states u_t in the physical space at time t.
- 2. A mapping $D_{ heta}$ from latent space to physical space and vice-versa

For time-dependent parameterized PDE:

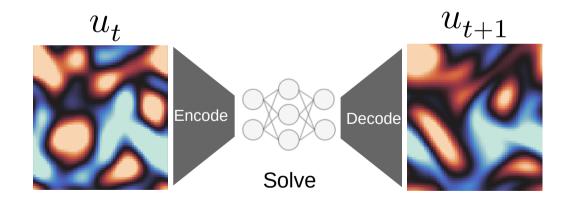
$$\dot{u} = \mathcal{N}(u; \beta), \quad u(t, x) : \mathcal{T} \times \Omega \to \mathbb{R}^m,$$

Find:

- 1. A reduced latent space with latent coordinates $\alpha_t \in \mathbb{R}^k$, corresponding to solution states u_t in the physical space at time t.
- 2. A mapping D_{θ} from latent space to physical space and vice-versa
- 3. A mapping from $lpha_t$ to $lpha_{t+1}$ that solves the PDE in the latent space

For time-dependent parameterized PDE:

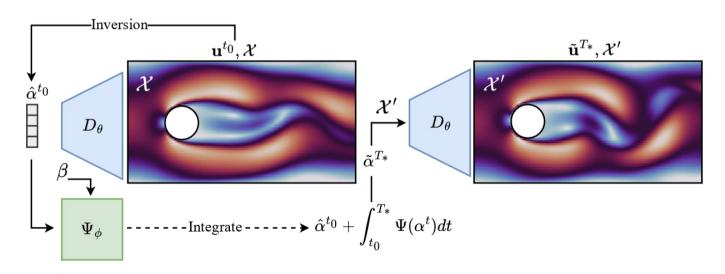
$$\dot{u} = \mathcal{N}(u; \beta), \quad u(t, x) : \mathcal{T} \times \Omega \to \mathbb{R}^m,$$



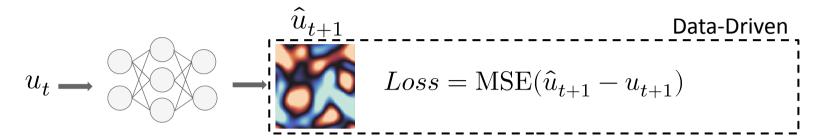
Introducing Φ -ROM

 Φ -ROM uses the same architecture as DINo[1]:

- Mesh-free and continuous decoding and encoding using a Neural Field $D(lpha,\mathcal{X})=\mathbf{u}$,
- Latent space time evolution using Neural-ODE-inspired dynamics network, $\Psi(\alpha) = d\alpha/dt$.

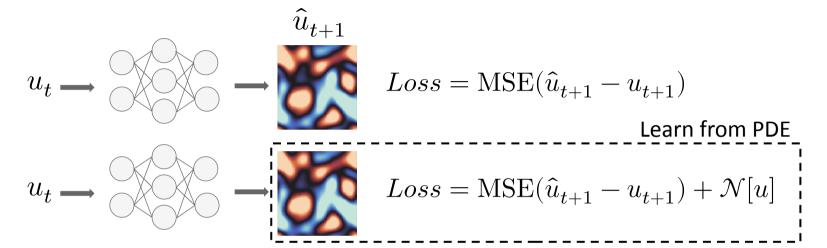


An emerging "physics-informed" method



Fails to generalize to unseen physical parameters, forecast beyond the training time horizon, etc.

An emerging "physics-informed" method



An emerging "physics-informed" method



Training Φ -ROM

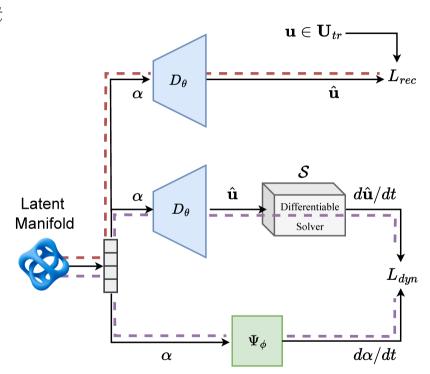
 Φ -ROM learns the latent dynamics $d\alpha/dt$ directly from a differentiable PDE solver \mathcal{S} .

• The dynamics loss L_{dyn} trains the dynamics network using the true physical dynamics given by the solver, i.e. $d\hat{u}/dt = \mathcal{S}\left[\hat{u}\right]$.

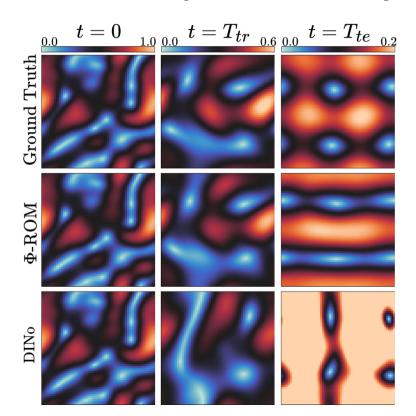
$$J_D(\alpha)\frac{d\alpha}{dt} = \frac{d\hat{u}}{dt}$$

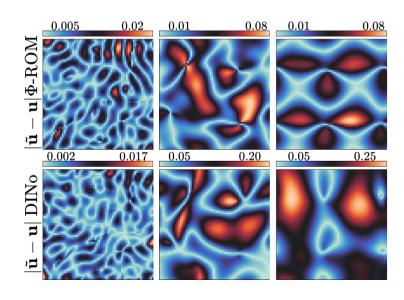
$$\Psi(\alpha) = J_D(\alpha)^\dagger \frac{d\hat{u}}{dt}$$
 Where $d\alpha/dt = \Psi(\alpha)$.

The latent manifold is regularized by the PDE solver.



Results: Temporal Stability

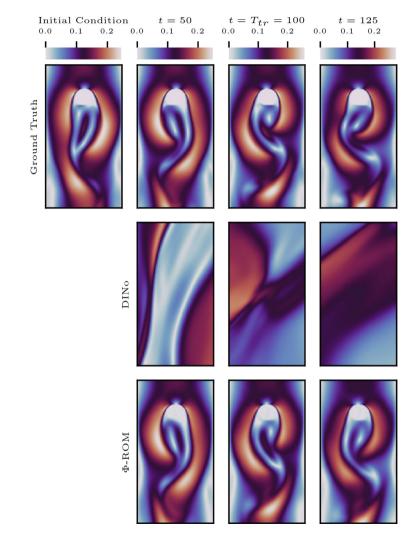




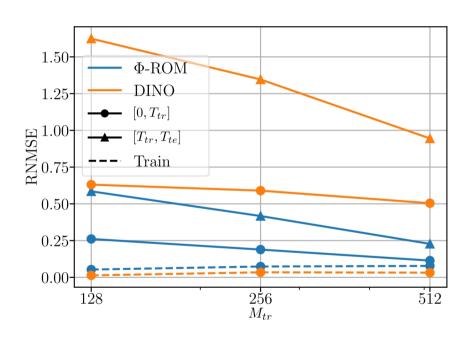
Results: Parameter Extrapolation

Re extrapolation is improved by about 4 times

Time	$[0,T_{tr}]$		$[T_{tr}, T_{te}]$	
β	β_{tr}	eta_{te}	$ $ β_{tr}	β_{te}
$\mathcal{X}_{tr} = \mathcal{X}_{\mathcal{S}} = \mathcal{X}_{te}$				
Φ-ROM	0.049	0.115	0.116	0.180
Φ-ROM DINo	0.011	0.457	0.108	0.566



Results: Data Efficiency



Summary and Conclusions

- Physics-informed training:
 - Differentiable solver as a building block of ML
- *Ф*-ROM:
 - Generalizes better to unseen initial conditions or parameters
 - Has improved temporal stability
 - Extrapolates beyond training time horizon
- More in our paper:
 - Robust to various physical phenomena (e.g. shocks)
 - Works nicely with sparse observations
 - Mesh-free
 - Continuous in space and time

