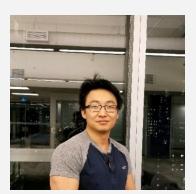
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning

Vahid Balazadeh*1, Hamid Kamkari*2, Valentin Thomas2, Jeremy Ma2, Benson Li¹, Jesse C. Cresswell2, Rahul G. Krishnan¹

¹University of Toronto, ²Layer 6 Al, Toronto, Canada



Motivation: Heterogeneous Causal Effects

- You're an online retailer deciding whether to offer a 10% discount
- You have historical observational data of the past items and customers

ID	Received Discount (T)	Bought Item (Y)	Customer Features (X ₁)	Item Features (X ₂)
001	✓Yes	✓Yes	Repeat buyer, low income	Mid-range headphones
002	× No	✓Yes	High income, loyal	Premium laptop
003	✓Yes	× No	New visitor, student	Budget smartphone

• Should we offer the new customer a discount?

100	?	?	Student, loyal	Bluetooth Speaker
			•	•

Motivation: Heterogeneous Causal Effects

• Can we train a predictive model from the features to the outcome?

ID	Received Discount (T)	Customer Features (X _I)	Item Features (X ₂)
001	✓Yes	Repeat buyer, low income	Mid-range headphones
002	× No	High income, loyal	Premium laptop
003	✓Yes	New visitor, student	Budget smartphone

(Training)

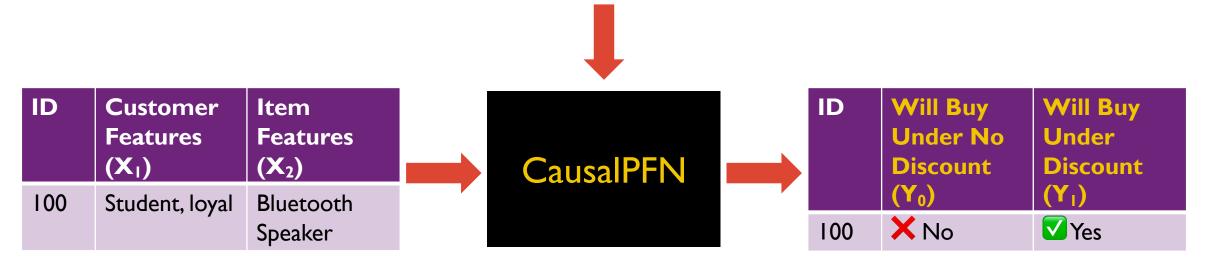
Motivation: Heterogeneous Causal Effects

• Can we train a predictive model from the features to the outcome?

ID	Received Discount (T)	Customer Features (X ₁)	Item Features (X ₂)
100	X No	Student, loyal	Bluetooth Speaker
100	✓Yes	Student, loyal	Bluetooth Speaker
(Inference)		Predictive Model Bought Item (Y)	
SITY OF		X No	

This Work: Black-Box Heterogeneous Causal Effect Estimation

ID	Received Discount (T)	Bought Item (Y)	Customer Features (X _I)	Item Features (X ₂)
001	✓Yes	✓Yes	Repeat buyer, low income	Mid-range headphones
002	× No	✓Yes	High income, loyal	Premium laptop
003	✓Yes	X No	New visitor, student	Budget smartphone



Target Quantities

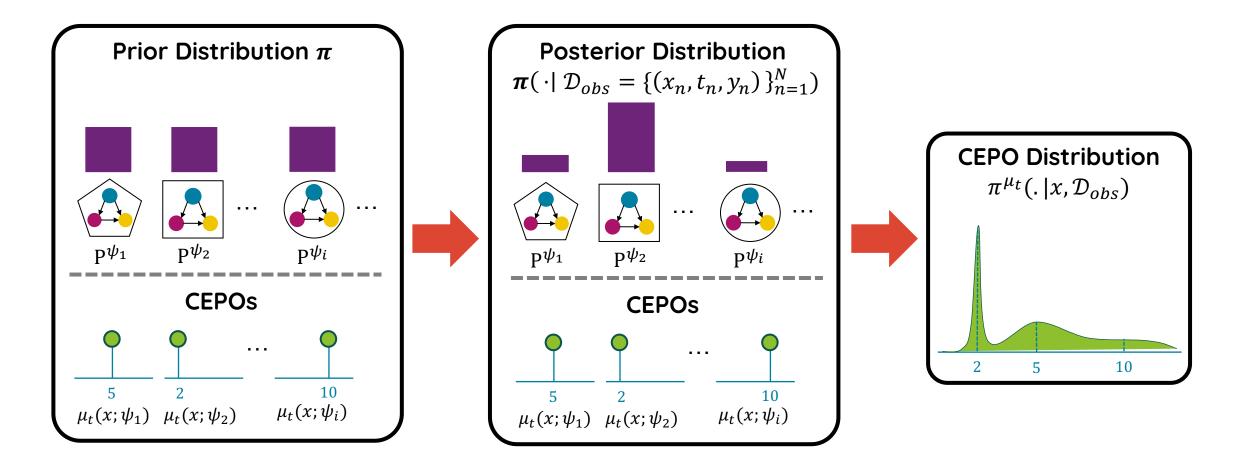
The goal is to estimate the conditional expected potential outcomes (**CEPOs**) from observational data (X, T, Y)

$$\mu_t(\mathbf{x}) := \mathbb{E}\left[Y_t | \mathbf{X} = \mathbf{x}\right]$$

$$\tau(x) = \mu_1(x) - \mu_0(x)$$

Conditional Average Treatment Effect – CATE

A Formalism for Estimator Design



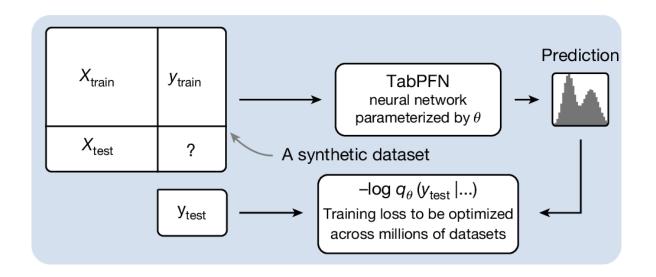
This Framework is Elegant but Practically Challenging

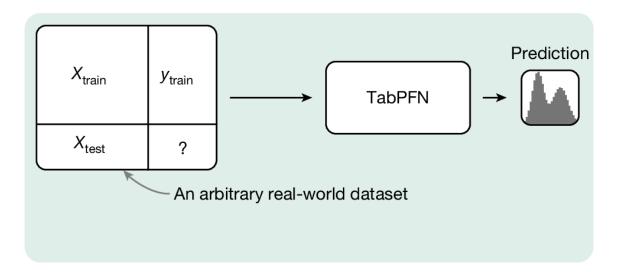
- Expensive Inference
 - Exact sampling from the posterior (e.g. Markov-Chain Monte-Carlo) is slow

- Approximation Shortcuts
 - Methods such as variational inference lose concentration guarantees

Prior-Data Fitted Networks (PFNs) – E.g., TabPFN [1]

• Directly learn the predictive distributions using large-scale pretraining of transformers





Challenges of Using PFNs For Causal Effect Estimation

• Challenge I (Distribution Shift): Typically, it is assumed that train and test data come from the same distribution

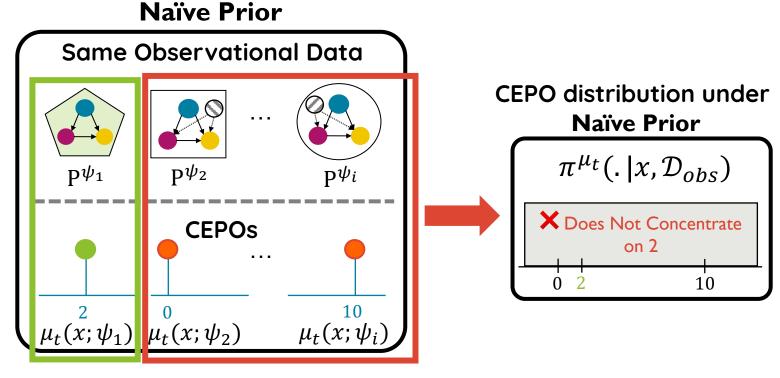
$$(X_{train}, T_{train}, Y_{train}) \sim (X_{test}, T_{test}, Y_{test})$$

Not the case in causal inference:

$$(X_{train}, T_{train}, Y_{train}) \sim (X_{test}, T_{test} = \mathbf{0}, Y_{\mathbf{0}})$$
 or $(X_{train}, T_{train}, Y_{train}) \sim (X_{test}, T_{test} = \mathbf{1}, Y_{\mathbf{1}})$

Challenges of Using PFNs For Causal Effect Estimation

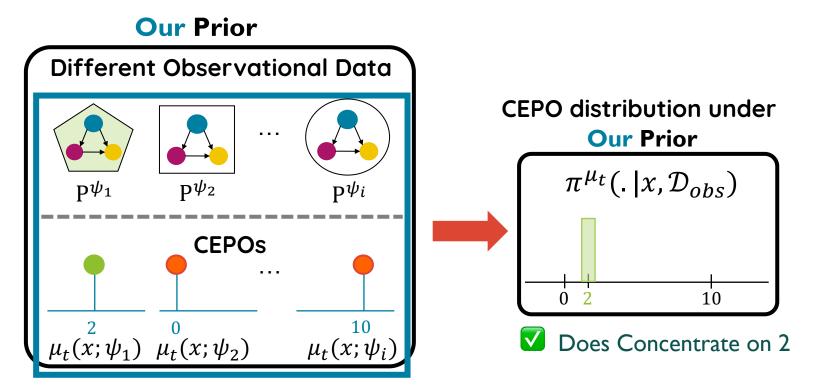
• Challenge 2 (Identifiability): It's not always possible to identify causal effects from observational data alone.



Ground-truth

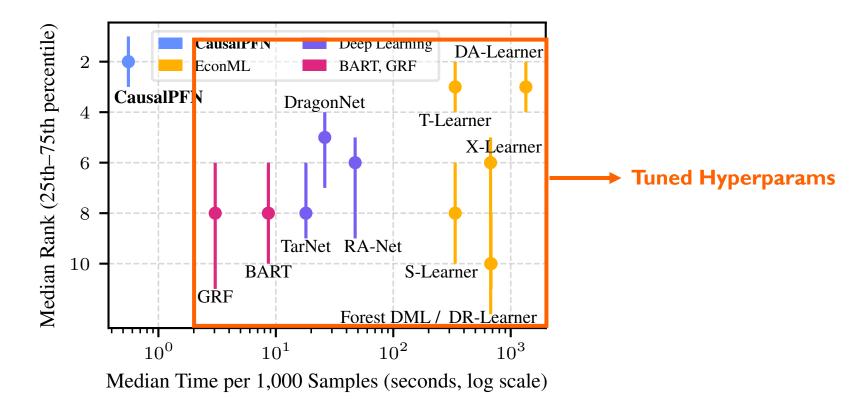
Challenges of Using PFNs For Causal Effect Estimation

• Challenge 2 (Identifiability): It's not always possible to identify causal effects from observational data alone.



Empirical Results

- Time vs. Performance comparison across 310 causal inference tasks from IHDP, ACIC, and Lalonde.
- CausaIPFN achieves the best average rank (by the error in CATE estimation).



Summary

- Bayesian causal inference with the large-scale training paradigm of PFNs
- Theoretical characterization of rationale for prior identifiability
- Strong empirical results; a practical tool for automated causal inference

https://github.com/vdblm/CausalPFN

Thank you!

