

Diffusion-Driven Two-Stage Active Learning for Low-Budget Semantic Segmentation

Jeongin Kim¹

Wonho Bae²

YouLee Han¹

Giyeong Oh³

Youngjae Yu⁴

Danica J. Sutherland^{2,5}

Junhyug Noh¹

¹EWHA

²UBC

3YONSEI

⁴SNU

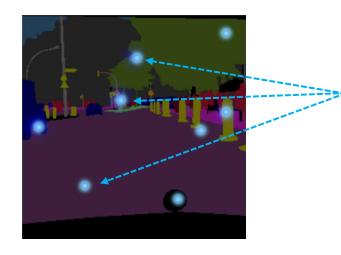
⁵Amii

Background

- Problem: fully-supervised semantic segmentation requires dense pixel labeling.
 - Manual annotation is extremely costly and time-consuming
 - → Need to reduce labeling costs while maintaining strong performance
- Active Learning (AL) alleviates this by selecting informative samples for annotation
 - Prior AL studies query samples at different granularities:
 - Image-level (i.e., subset of images)
 - Region-level (e.g., super-pixels)
 - Pixel-level (e.g., identical pixel budget per image)

Background

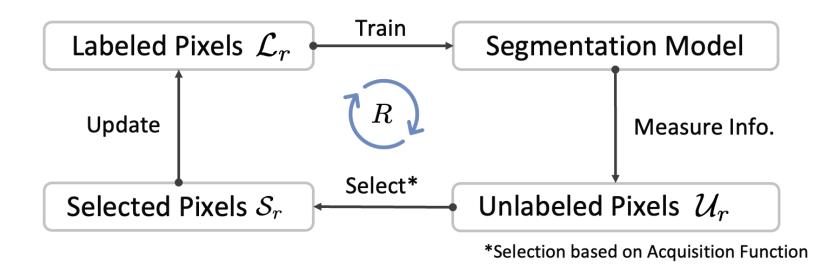
- Our Approach: Defining a New Practical Setting
 - → Select an extremely small number of pixels from a unified candidate pool across images
- A Key Question:



Which pixels are the most informative to label to improve segmentation performance?

Problem Setup: Active Learning

- At each active learning round, the model selects b informative pixels from unlabeled pixels for annotation
- Selected pixels are added to the labeled set
- The segmentation model is retrained iteratively

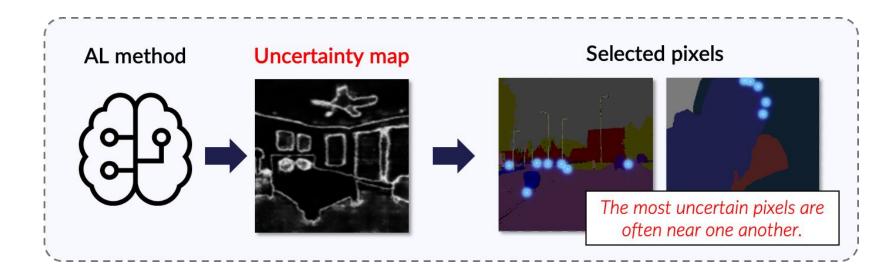


Problem Setup: Budget Setting

- Total Budget (B): We fix the total annotation budget B = NWhere N is the total number of images in the dataset
 - → Averages to only one labeled pixel per image
- AL Process: We split this budget evenly into 10 AL rounds
 - \rightarrow Yields a budget of b = 0.1N pixels per round
- In total, only 0.0015% of all pixels are annotated after 10 rounds
 - → An extreme low-budget regime

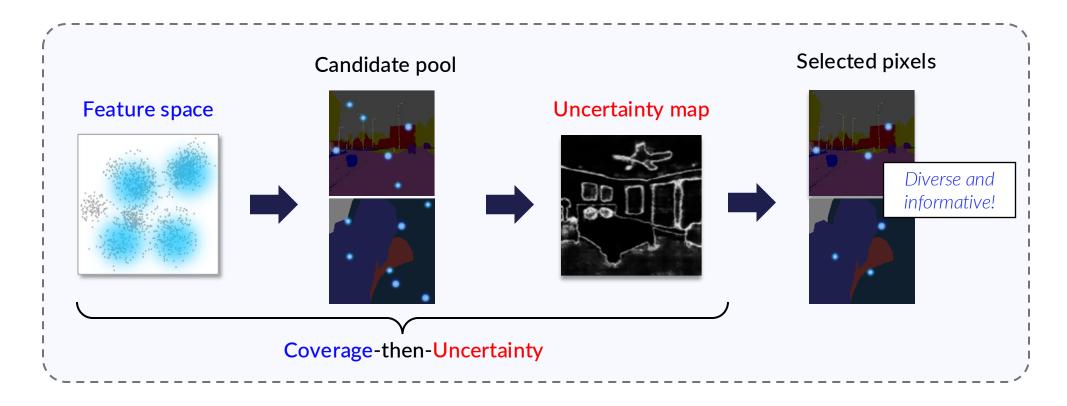
Motivation

- Existing pixel-level active learning studies [1, 2]
 - → Apply uncertainty-based acquisition functions
 - → But they tend to select redundant pixels as highly uncertain pixels are clustered along local regions (e.g., object boundaries)



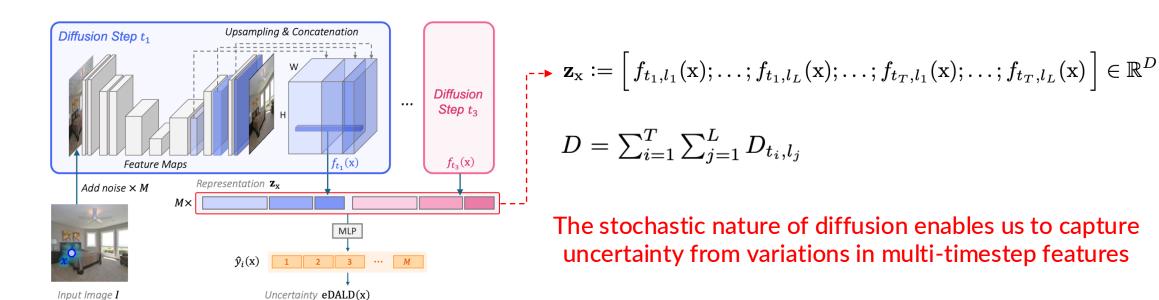
Our Solution

- How do we alleviate this redundancy? We introduce a two-stage sampling strategy
 - 1. Selects a representative candidate pool
 - 2. Narrows down the most uncertain samples

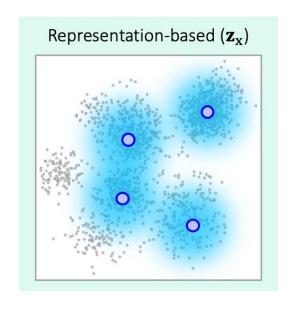


Diffusion Representations for Segmentation

- Building on LEDM [3], we extract multi-scale features from a pre-trained diffusion model
 - → Utilizing pre-trained features is essential in low-budget regimes as sparse labels provide insufficient supervision for learning effective representations
- For a given pixel x, we obtain a multi-scale representation z_x , which is fed to lightweight segmentation head $s_\theta \colon \mathbb{R}^D \to \mathbb{R}^C$



1st stage: Representation-based candidate selection



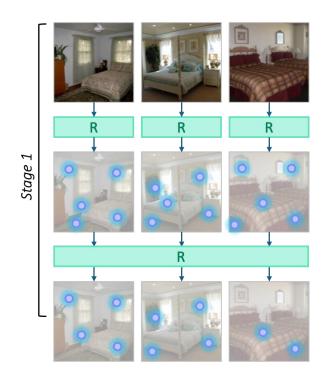
MaxHerding-based Greedy selection [4]

$$\tilde{\mathbf{x}}^* \in \operatorname*{argmax}_{\tilde{\mathbf{x}} \in I, \tilde{\mathbf{x}} \in \mathcal{U}} \hat{\mathbf{C}}_k(\mathcal{L} \cup \{\tilde{\mathbf{x}}\})$$

where
$$\hat{\mathbf{C}}_k(\mathcal{L} \cup \{\tilde{\mathbf{x}}\}) \coloneqq \frac{1}{|\mathcal{U}|} \sum_{\mathbf{x} \in \mathcal{U}} \left[\max_{\mathbf{x}' \in \mathcal{L} \cup \{\tilde{x}\}} k(\mathbf{x}, \mathbf{x}') \right]$$

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{z}_{\mathbf{x}} - \mathbf{z}_{\mathbf{x}'}\|_2^2}{\sigma^2}\right)$$
 (RBF Kernel)

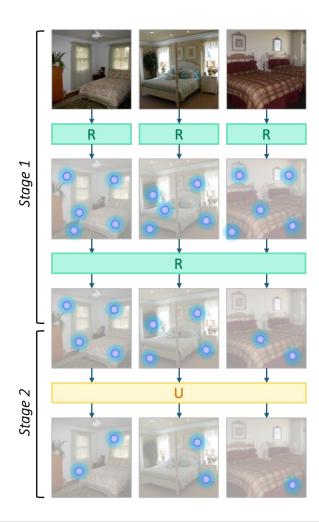
1st stage: Representation-based candidate selection



Two-step MaxHerding

- I. Local Herding Identify K representative pixels within each image \rightarrow Form initial pool \mathcal{M}_0
- II. Global Herding Apply MaxHerding across \mathcal{M}_0 to select \mathcal{M} diverse candidates

2nd stage: Uncertainty-based selection



Diffusion-based Active Learning by Disagreement (DALD)

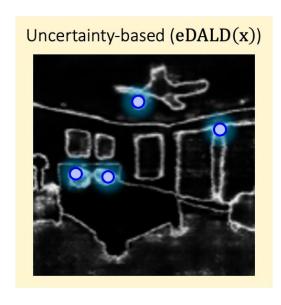
$$\mathbf{x}^* \in \underset{\mathbf{x} \in \mathcal{U}}{\operatorname{argmax}} \ \mathbf{I}(\hat{Y}; Z \mid \mathbf{x}, s_{\theta}, f)$$

$$\mathrm{I}(\hat{Y}; Z \mid \mathrm{x}, s_{ heta}, f) = \underbrace{\mathrm{H}(\hat{Y} \mid \mathrm{x}, s_{ heta}, f)}_{\mathrm{Unconditional\ entropy}} - \underbrace{\mathbb{E}}_{\mathbf{z} \sim q(\cdot \mid \mathrm{x})} \left[\underbrace{\mathrm{H}(\hat{Y} \mid Z = \mathbf{z}, \mathrm{x}, s_{ heta})}_{\mathrm{Conditional\ entropy}} \right]$$

Inspired by BALD [5]

- → Measures model disagreement (mutual information, MI)
- → Across stochastic forward passes
- \rightarrow Multiple noisy inputs \rightarrow varied features \rightarrow higher MI
 - → stronger epistemic uncertainty

2nd stage: Uncertainty-based selection



Entropy-Augmented DALD (eDALD)

To further account for aleatoric uncertainty and overall predictive noise, we introduce an Entropy term.

$$x^* = \underset{x \in \mathcal{U}}{\operatorname{argmax}} \operatorname{eDALD}(x),$$

where
$$eDALD(\mathbf{x}) = I(\hat{Y}; Z \mid \mathbf{x}, s_{\theta}, f) + H(\hat{Y} \mid \mathbf{z}^{(0)}, \mathbf{x})$$

Datasets

• Evaluate the proposed metho on **four** standard semantic segmentation benchmarks

	CamVid	ADE-Bed	Cityscapes	Pascal-Context
Sample	CLEAR			
# of class	11	30	19	33
Scene	Urban driving	Bedroom	Street-scene	Everyday scenes
Example	road, building, car	bed, lamp, pillow	road, pedestrian, car	person, dog, chair

Effect of representation-first filtering on uncertainty sampling

Uncertainty	UC Only	$\mathbf{Herding} \to \mathbf{UC}$	Gain (pp)	Gain (%)
Entropy	25.26 ± 0.36	30.77 ± 0.44	+5.51	+21.81
Margin	31.27 ± 1.10	32.77 ± 0.75	+1.50	+4.80
BALD	24.59 ± 0.97	22.79 ± 0.89	-1.80	-7.32
DALD	23.81 ± 3.60	21.05 ± 1.05	-2.76	-11.59
PowerBALD	30.03 ± 0.76	31.57 ± 0.79	+1.54	+5.13
PowerDALD	31.30 ± 1.22	32.00 ± 0.66	+0.70	+2.24
eBALD (Entropy + BALD)	25.96 ± 1.92	32.12 ± 0.40	+6.16	+23.73
eDALD (Entropy + DALD)	25.14 ± 0.57	36.12 ± 0.24	+10.98	+43.68

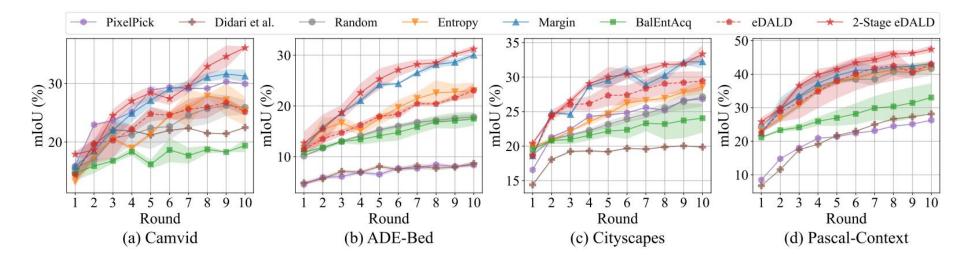
- MaxHerding-based filtering exhibits the best synergy with eDALD
 - → Reflects the complementary role of the two signals:
 - 1. **Disagreement**: Identifies perturbation-sensitivity that entropy may overlook
 - 2. **Entropy**: Recovers low-confidence areas that disagreement misses

Performance comparison with baselines

Backbone	Method	CamVid	ADE-Bed	Cityscapes	Pascal-C	Avg
DeepLabV3	PixelPick [1]	29.93 ± 0.12	8.35 ± 0.41	26.82 ± 0.14	26.28 ± 0.09	22.85
	Didari et al. [2]	22.47 ± 0.10	8.66 ± 0.53	19.85 ± 0.07	28.15 ± 0.11	19.78
DDPM	Random	25.91 ± 1.23	17.83 ± 0.62	27.13 ± 1.38	41.70 ± 2.08	28.14
	Entropy	25.26 ± 0.36	23.02 ± 1.64	28.62 ± 1.05	42.09 ± 1.99	29.74
	Margin	31.27 ± 1.10	30.03 ± 0.37	32.23 ± 1.21	45.11 ± 2.45	34.66
	BalEntAcq	19.37 ± 1.10	17.48 ± 1.36	24.04 ± 2.07	33.06 ± 4.18	23.49
	eDALD	25.14 ± 0.57	23.06 ± 1.29	29.44 ± 1.38	43.05 ± 0.12	30.17
	2-Stage eDALD	36.12 ± 0.24	31.12 ± 0.20	33.34 ± 0.78	47.98 ± 0.41	37.14

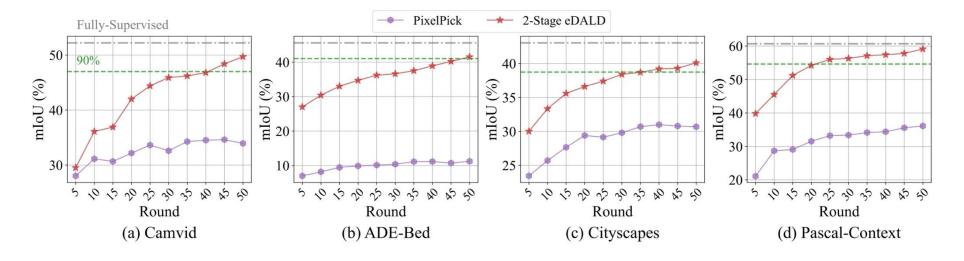
- DDPM backbone significantly outperforms DeepLabV3 backbone
- Our 2-Stage eDALD achieves the best average performance, consistently outperforming all baselines

Round-wise learning curves



- Our 2-Stage eDALD consistently achieves the highest final-round performance across all datasets
- Uncertainty-based single-stage methods show only slow, gradual improvements, leading to smaller overall gains

Convergence to fully-supervised performance



- More rounds progression when 2-stage eDALD (coverage → uncertainty) is applied only in the low-budget phase
- Reaches 90% of fully-supervised mIoU using only 0.003-0.007% of pixels

Conclusion

- We proposed 2-stage eDALD, a novel strategy for low-budget active learning:
 - 1. Stage 1 ensures diverse coverage using diffusion-based representations
 - 2. **Stage 2** refines selection by eDALD, our novel uncertainty metric
- Our metric (eDALD) is a confidence-aware disagreement-based metric that effectively captures both epistemic and aleatoric uncertainty
- Key Finding: We found that combining representation diversity with diffusion-based uncertainty enables effective learning even under extremely low annotation budgets

Thanks for listening!

For more information, please refer to our paper and code

Paper

Code

Poster ID: 118018 | Schedule: Wednesday, Dec 11th | Exhibit Hall C,D,E