

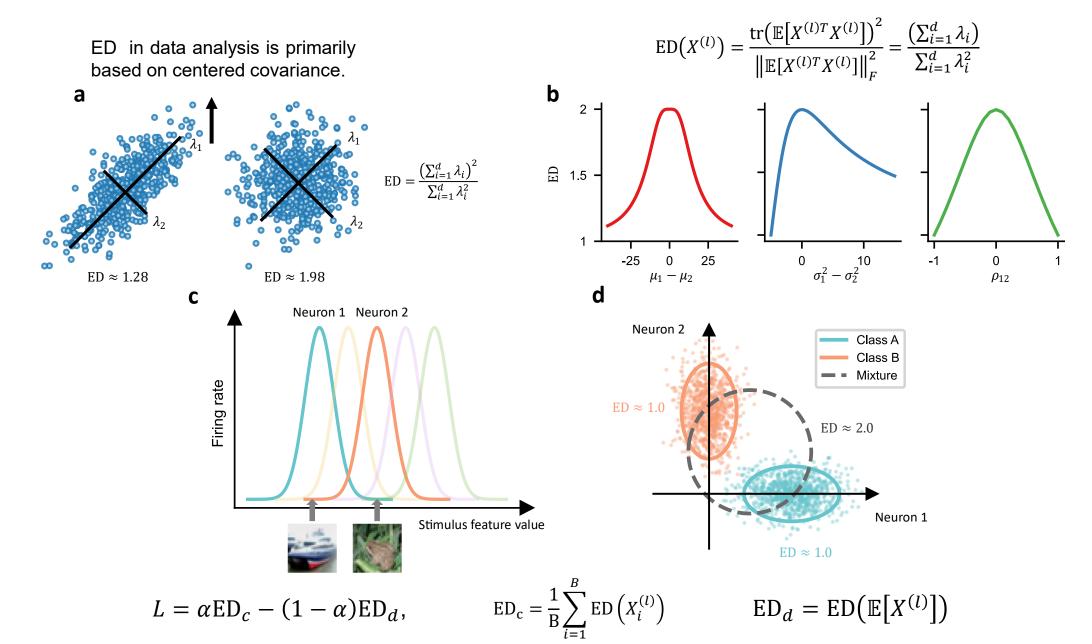
Stochastic Forward-Forward Learning through Representational Dimensionality Compression

Zhichao Zhu, Yang Qi, Hengyuan Ma, Wenlian Lu, Jianfeng Feng Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China

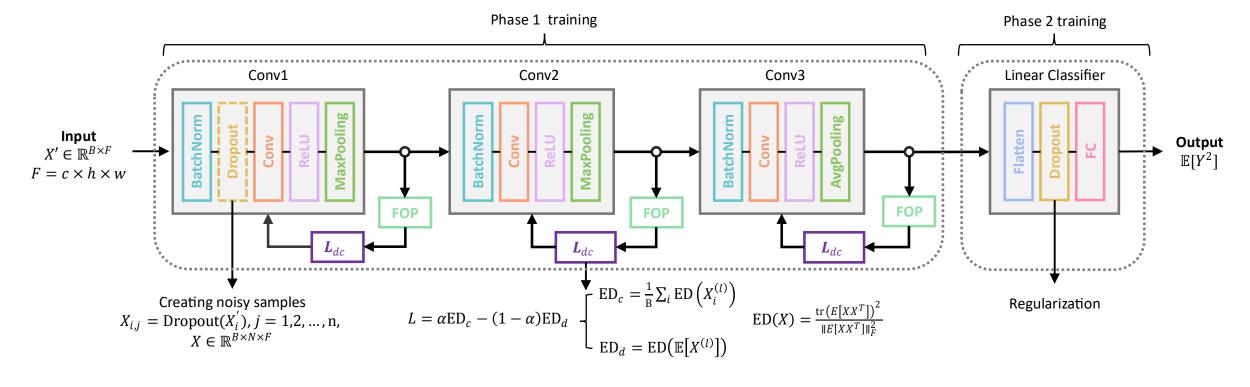
Motivation

- Backpropagation (BP) lies at the heat of the success of conventional deep learning but it is biologically implausible.
- The Forward-Forward (FF) algorithm offers **a bottom-up alternative** to BP for training neural networks. However,
 - It requires high-quality negative samples.
 - Existing "goodness" functions depend only on squared activations, ignoring correlation among neurons.
- Noise is a fundament property for the computation in biological brain.
 - Both the neural variability and the noise correlation can affect the quality of a neural code.
- **Goal:** Design a *second-order* local loss that actively take noise into computation and bypass the need of generating negative samples.

Effective dimensionality as a goodness function



Training and inference protocols



- Using dropout to create a set of noisy variants for each input.
- Two phase training: first train convolutional blocks using *L* block by block, then train the linear classifier solely to estimate the how well the network has learnt.
- For the phase 1 training, project $X^{(l)}$ to a lower dimension through a fixed orthonormal projection (FOP) module before computing ED.
- Using the energy term $E[Y^2]$ as the predictive score rather than E[Y].
- Network architecture remained the same for all experiments.

Comparable performance with other non-BP methods

Method	Validation Accuracy (%)		
	MNIST	CIFAR10	CIFAR100
BP♠	99.33±0.04	82.50±0.09	61.28 <u>±</u> 0.25
DFA	98.98±0.05	73.10±0.50	41.00±0.25
Original FF	98.73	59	-
CaFo FF	98.95	69.49	42.13
CwC FF	99.42 ± 0.08	78.11 ± 0.44	51.32
Soft Hebbian ∳	99.35±0.03	80.31±0.14	56.00
Hard Hebbian ∳	-	76.00	-
GIM ♠♠	99.29±0.03	78.19±0.34	50.09±0.45
EBL♦	99.56	89.6	65.8
Proposed method	99.31±0.07	76.96±0.73	53.29±1.02

^{•:} comparable architecture.

^{♠:} reimplementation results.

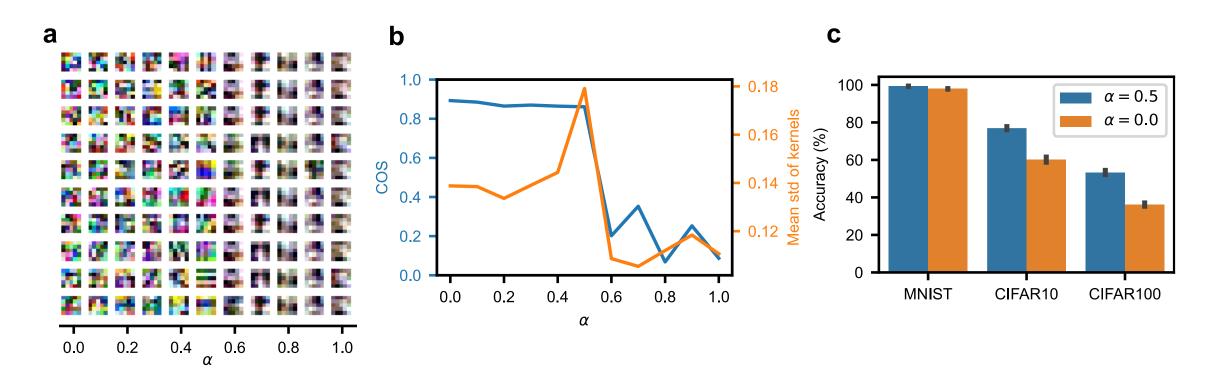
^{♦:} used a deeper network, but adding more than three convolutional blocks with our method leads to a performance drop.

Optimizing ED leads to orthogonal weights

- When $\alpha > 0.5$, convolutional kernels collapse to the similar patterns.
- When $\alpha \leq 0.5$, it leads to almost orthogonal weights (COS > 0.8).

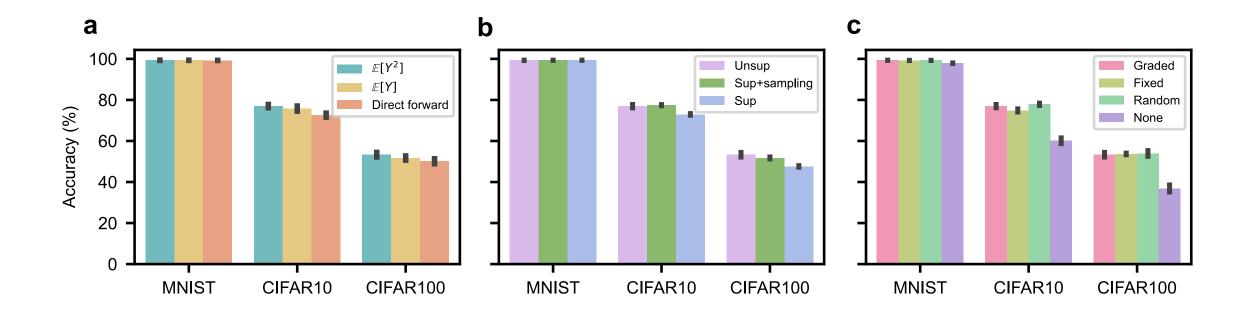
$$COS = \frac{1}{K} \left(\sum_{j < i} 1 - \left| \frac{\langle w_i, w_j \rangle}{\|w_i\| \|w_j\|} \right| \right)$$

• Both ED_c and ED_d necessitate for achieving a good performance.



Factors that affecting task performance

- The linear classifier can have a slightly better performance when using $E[Y^2]$
 - Both the mean and variance can carry the information about the class.
- Unsupervised learning is enough.
 - Use the label information to actively group $X^{(l)}$ for ED_c is unnecessary.
 - Noisy sampling improves the performance.
- Projecting $X^{(l)}$ to lower dimension facilitate learning, no matter what projecting scheme is used.



Higher compression ratio leads to better performance

- The ratio $\frac{\mathrm{ED}_d}{\mathrm{ED}_c}$ computed in the projected space increase with the network depth
- The linear separability of the internal representations also increases.
- Correlation among neurons also carried some information about the label. However, such information cannot be readout using a linear method.



Discussion

Theoretical connections:

- The dual objective of minimizing ED_c and maximizing ED_d parallels **predictive coding**:
 - ED_c: stable responses to noisy inputs \rightarrow *prediction consistency*
 - ED_d: diverse representations across inputs \rightarrow *novelty encoding*

Biological feasibility:

- Winner-Take-All (WTA) circuits reduce ED_c.
- Inhibitory competition & divisive normalization can expand ED_d .

Next steps:

- Scaling to deeper architectures and larger datasets.
- Developing **local circuit models** implementing ED_c / ED_d trade-off.
- Exploring implementation on **neuromorphic hardware** where noise is inevitable.

Thanks!