

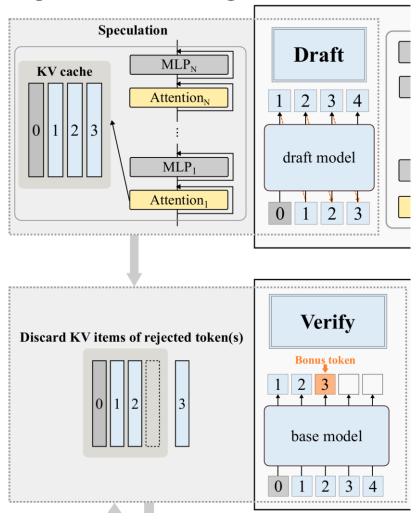
EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization

Yize Wu^{1,2}, Ke Gao¹, Ling Li^{1,2}, Yanjun Wu^{1*}

¹Institute of Software, CAS ²University of Chinese Academy of Sciences

The 39th Annual Conference on Neural Information Processing Systems

Speculative Decoding

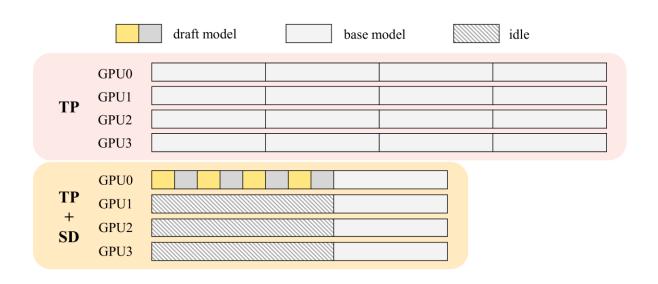

- **Draft**: a smaller model generates a draft token sequence
- Verify: the base model conducts token-level parallel and non-autoregressive verification

Tensor Parallelism

Partitioning workloads across multiple devices

Both are lossless

Speculative Decoding

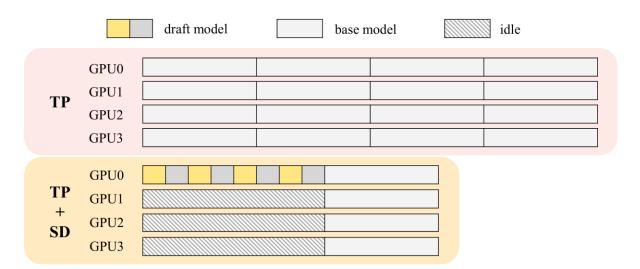


SD + TP = further lossless acceleration, BUT...

Inefficient Multi-GPU Utilization

- Optimal TP size:
 - Verification > Drafting
- GPU idling during drafting

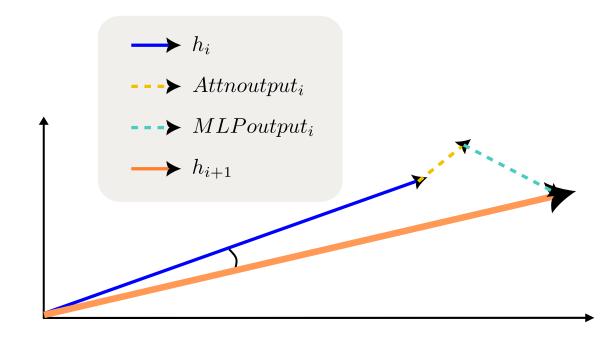
Model	TP=1	TP=2	TP=4	TP=8
L3-70B	8.39	13.00	13.23	13.23
L3-70B*	OOM	19.5	28.47	28.25
Q2-72B	8.49	13.03	13.01	12.89
Q2-72B*	OOM	18.91	28.63	29.39
L3-8B	36.76	33.90	32.31	32.39
L3-8B*	79.39	68.86	68.35	67.76
Q2-7B	37.16	36.46	37.12	-
Q2-7B*	83.38	73.9	73.81	-

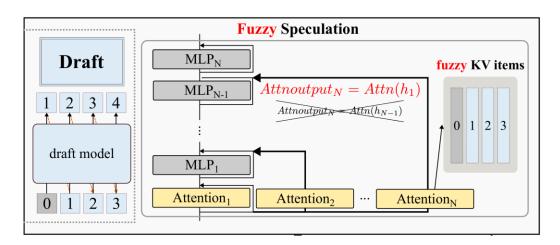

SD + TP = further lossless acceleration, BUT...

Inefficient Multi-GPU Utilization

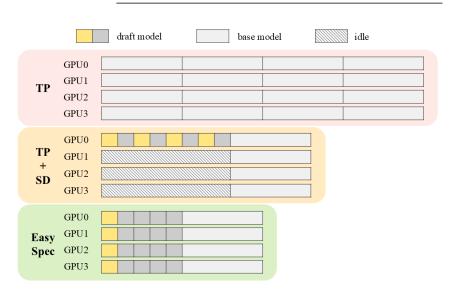
- Optimal TP size:
 - Verification > Drafting
- GPU idling during drafting

Cause: layer-level data dependency


- $h_{i+1} = h_i + Attnoutput_i + MLPoutput_i$
- Layers have to be run sequentially, limiting parallelism to intra-layer level

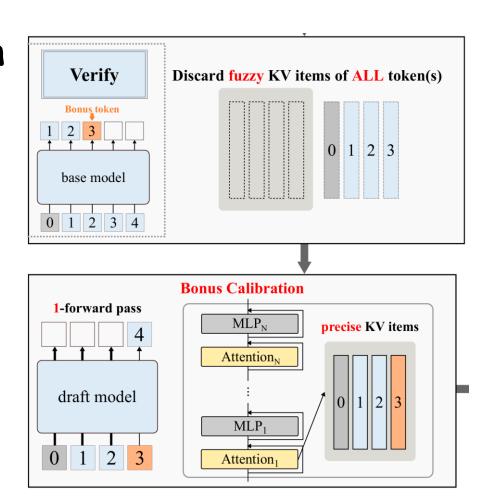

Cross-Layer Hidden-State Approximation

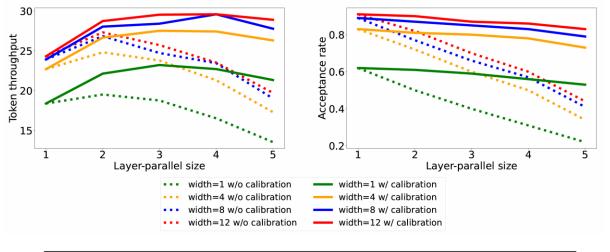
• h_{i+1} can be **well approximated** by h_i , and therefore h_{i+N} can also be well approximated by h_i



1. Layer-Parallel Fuzzy Speculation

- Directly input h_i to attention layer i+1, ..., i+N
 - Eliminate N-layer data dependencies, utilizing idling GPUs by inter-layer parallelism
 - Well approximate $Attnoutput_{i+j}$, maintaining high precision of the fuzzy results
- · Fuzzy speculation does not impact output quality
- MLP layers are still run sequentially


Algorithm 2 Layer-Parallel Fuzzy Speculation Input: hidden state h, N consecutive attention layers $Attn_1, \cdots, Attn_N$ and MLP layers MLP_1, \cdots, MLP_N $h_1 = h$ for i = 1 to N do Attnoutput $_i = Attn_i(h_1)$ (parallel) end for for i = 1 to N do $h'_i = h_i + Attnoutput_i$ $MLPoutput_i = MLP_i(h'_i)$ $h_{i+1} = h'_i + MLPoutput_i$ end for


1.Layer-Parallel Fuzzy Speculation2.Bonus Calibration

- Fuzzy KV items can accumulate long-term imprecisions.
- Bonus calibration discards all KV items after verification, and refill the KV cache with 1forward layer-sequential pass of the draft model, with the bonus token

Experiment

		Llama-3-	70B(8E	3)-Instruc	Qwen2-72B(7B)-Instruct					
Dataset	Method	d	v	total	α	ď	v	total	α	
temperature=0										
	TP	-	-	1.53x	-	-	-	1.56x	-	
MMLU	+sd	3.52	2.15	2.05x	0.57	3.32	2.25	2.13x	0.52	
WIVILU	+tree	2.52	1.59	2.82x	0.88	2.38	1.62	2.96x	0.85	
	EasySpec	$1.70(\uparrow 1.48x)$	1.73	3.38x	0.82	$1.65(\uparrow 1.44x)$	1.70	3.55x	0.80	
	TP	-	-	1.55x	-	-	-	1.57x	-	
HE	+sd	2.93	1.79	2.50x	0.74	2.82	1.83	2.58x	0.69	
пь	+tree	2.53	1.58	2.87x	0.92	2.26	1.51	3.18x	0.95	
Eas	EasySpec	$1.61(\uparrow 1.57x)$	1.63	3.64x	0.87	$1.48(\uparrow 1.52x)$	1.54	3.97x	0.91	
	TP	-	_	1.52x	-	-	-	1.54x	-	
MATH	+sd	2.96	1.74	2.45x	0.73	2.48	1.65	2.86x	0.78	
MATH	+tree	2.50	1.47	2.90x	0.95	2.20	1.45	3.24x	0.96	
	EasySpec	$1.58(\uparrow 1.58x)$	1.55	3.68x	0.91	$1.44(\uparrow 1.52x)$	1.47	4.06x	0.95	
	TP	-	_	1.50x	-	-	-	1.52x	-	
IEE1	+sd	3.68	2.16	1.93x	0.55	4.24	2.80	1.64x	0.39	
IFEval	+tree	2.53	1.55	2.76x	0.89	2.80	1.84	2.49x	0.72	
	EasySpec	$1.68(\uparrow 1.51x)$	1.65	3.39x	0.82	$1.87(\uparrow 1.50x)$	1.94	3.04x	0.67	
	TP	-	_	1.54x	-	-	-	1.56x	-	
MCCM	+sd	2.66	1.61	2.73x	0.80	2.62	1.75	2.73x	0.72	
MGSM	+tree	2.45	1.48	2.96x	0.96	2.12	1.50	3.29x	0.94	
	EasySpec	$1.55(\uparrow 1.58x)$	1.51	3.80x	0.93	$1.54(\uparrow 1.37x)$	1.57	3.83x	0.88	

Models	MN	MMLU Hume		enEval MATH		IFEval		MGSM		
Q2-72B-1.5B	24.02	29.94	26.28	33.78	27.54	36.11	20.65	25.17	25.92	33.26
Q2-72B-0.5B	24.57	29.29	28.80	33.15	29.61	35.82	20.57	24.08	27.48	32.63
L3-70B-3B	25.41	31.32	26.81	32.52	27.49	35.78	25.20	30.29	27.23	35.18
L3-70B-1B	32.10	34.37	34.25	37.25	35.70	40.00	28.60	34.04	35.78	40.25
L3-8B-1B	47.97	56.49	50.99	61.88	54.04	64.97	49.54	56.01	52.68	63.68

The cosine similarities between h_i and h_{i+j} are approaching 1, indicating high approximation precision.

LP size	h	q	k	v	Attnoutput
2	0.93	0.98	0.99	0.92	0.93
3	0.89	0.97	0.98	0.86	0.88
4	0.86	0.96	0.97	0.82	0.83

Check our paper and code for more information!

Paper

https://openreview.net/forum?id=RGUcF6pIZN https://github.com/Yize-Wu/EasySpec

Code

Contact: wuyize2021@iscas.ac.cn