

Personalized Decision Modeling: Utility Optimization or

Textualized-Symbolic Reasoning

Yibo Zhao¹, Yang Zhao¹, Hongru Du^{2,*,+}, Hao Frank Yang^{1,*}

⁺ This work was completed while Hongru Du was at Johns Hopkins University.

*Correspondence to: Hongru Du <qdc4kc@virginia.edu> and Hao (Frank) Yang <haofrankyang@jhu.edu>.

COVID-19 is a dangerous health threat

 x_4 COVID-19 can be prevented by vaccinatio

Someone in family get sick with COVID-19

 x_3 Risks of COVID-19 \geq Risks of vaccine

Trust Government

 x_7 Trust Science

https://yibozh.github.io/Athena/

Motivation

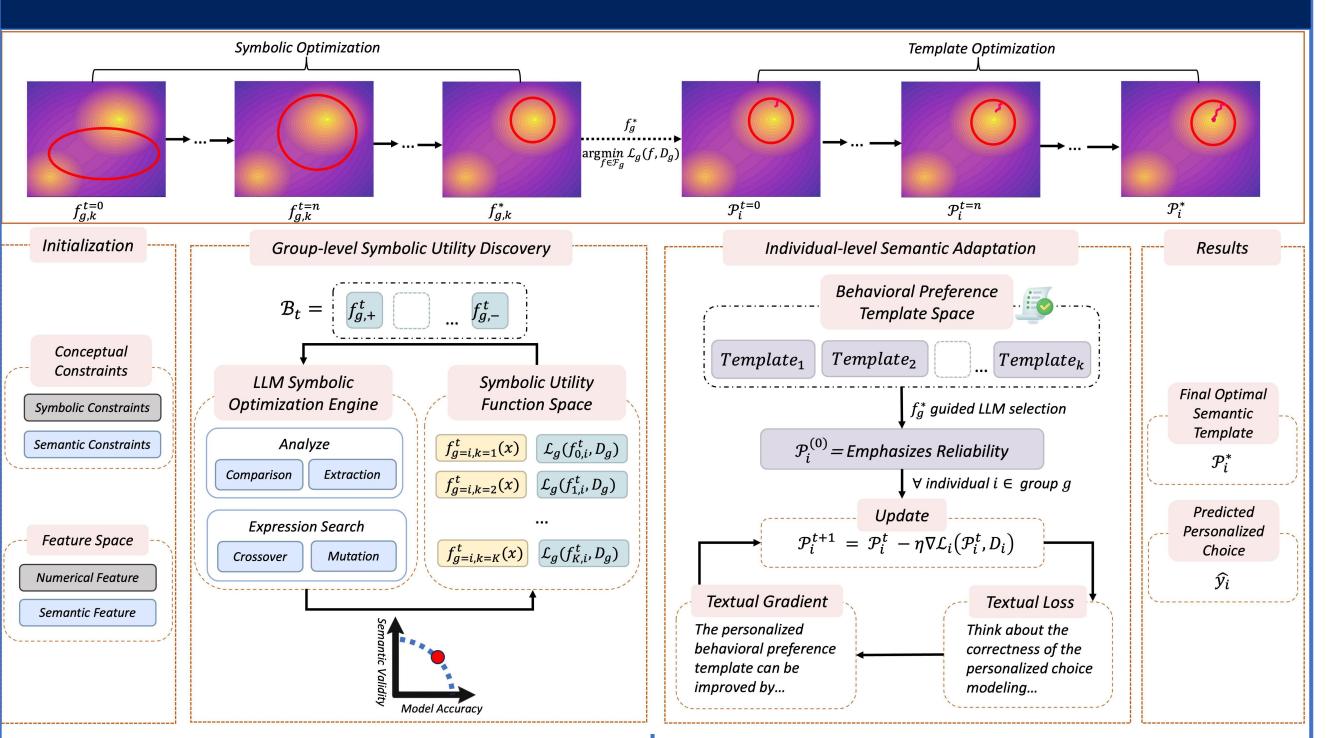
Challenge: Traditional decision models (e.g., Utility Theory) optimize for population-level predictions but fail to capture the unique "cognitive calculus" of individuals.

Gap:

- Utility-Based: Rigid math forms often miss nuanced personal constraints.
- LLMs: Strong reasoning but lack structural grounding, causing calibration errors.

Goal: Bridge this gap by combining Symbolic Utility Discovery (structure) with LLM-driven Semantic Adaptation (nuance) to better model high-stakes decisions like vaccine uptake and travel choices.

The ATHENA Framework



$$\{f_{g,k}^t\}_{k=1}^K \sim \phi(\cdot | g, C, S, B^{t-1})$$

Group-level Symbolic Utility Discovery

samples candidate symbolic utility functions $\{f_{q,k}^t\}_{k=1}^K$ from the LLM-conditioned distribution $\phi(\cdot | g, C, S, B^{t-1})$, guided by the concept library *C*, symbolic library *S*, and prior feedback B^{t-1}

$\mathcal{P}_i^{t+1} \leftarrow \mathcal{P}_i^t - \eta \nabla \mathcal{L}_i(\mathcal{P}_i^t, D_i)$

Individual-level Semantic Adaptation refines each person's \mathcal{P}_i through iterative updates. This process personalizes the template based on individual data D_i and semantic gradients, capturing heterogeneous preferences and contextual constraints.

Symbolic Utility Discovery

$$\hat{y}_i \sim \phi(\underbrace{\mathcal{P}_i^*, X_i} | f_g^*(X_i; \theta_g^*)$$

Personalized Decision Inference integrates the learned symbolic utility f_a^* with the adapted semantic template P_i^* to generate individualized predictions \hat{y}_i that reflect both group-level reasoning and personal context.

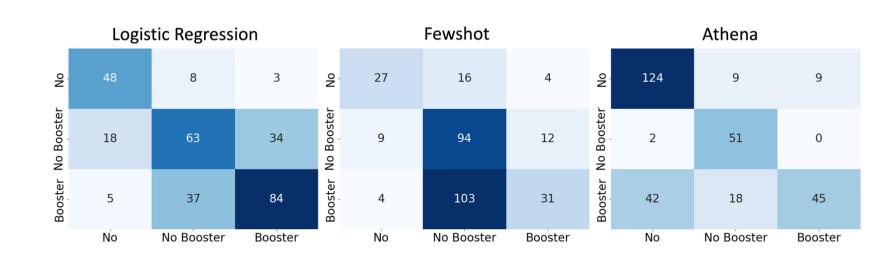
Results and Take aways

Table: Performance comparison of LLM-based, classical choice, and machine learning methods on the three-class Swissmetro and three-class COVID-19 Vaccine choice tasks.

	Method	LLM Model	Swissmetro				Vaccine			
			Acc.↑	F1.↑	CE.↓	AUC.↑	Acc.↑	F1.↑	CE.↓	AUC.↑
LLM- Based	Zeroshot	gemini-2.0-flash	0.5920	0.2940	0.9257	0.6561	0.5800	0.5092	0.8328	0.7607
		GPT-4o-mini	0.6300	0.2757	2.7258	0.3657	0.5433	0.5387	0.8562	0.7395
	Zeroshot-CoT	gemini-2.0-flash	0.5880	0.3478	0.9415	0.6331	0.5800	0.5073	0.8436	0.7526
		GPT-4o-mini	0.6420	0.2960	0.8957	0.6237	0.5500	0.5353	0.8540	0.7465
	Fewshot	gemini-2.0-flash	0.7580	0.7027	8.7244	0.7956	0.5667	0.5740	12.0324	0.7053
		GPT-40-mini	0.6815	0.4945	7.0029	0.7395	0.5067	0.5097	6.6110	0.6891
	TextGrad	gemini-2.0-flash	0.5568	0.2980	1.2011	0.5400	0.4241	0.4014	5.7813	0.6363
		GPT-40-mini	0.6500	0.3620	0.9079	0.5364	0.5084	0.4962	4.5412	0.6709
	ATHENA	gemini-2.0-flash	0.7679	0.7222	0.9041	0.8387	0.6797	0.5968	0.7610	0.8370
		GPT-40-mini	0.8134	0.7655	1.0863	0.8825	0.7345	0.7161	0.7551	0.8704
Utility Theory	MNL	/	0.6101	0.3887	0.8353	0.7074	0.4150	0.1955	1.0510	0.4301
	CLogit	/	0.5714	0.2424	0.8916	0.5976	0.4150	0.1955	1.0510	0.5000
	Latent Class MNL	/	0.6101	0.3967	0.8175	0.7182	0.1950	0.1088	1.0986	0.5000
Machine Learning	Logistic Regression	/	0.5620	0.5570	0.9310	0.7460	0.6500	0.6690	0.7630	0.8330
	Random Forest	/	0.7100	0.7050	0.7380	0.8810	0.6300	0.6470	0.7290	0.8420
	XGBoost	/	0.7080	0.7050	0.7040	0.8810	0.6300	0.6480	1.1420	0.8150
	BERT	/	0.7246	0.4994	0.7037	0.8811	0.6350	0.6541	0.7409	0.8168
	TabNet	/	0.6375	0.4060	0.7887	0.8810	0.6650	0.6684	0.8968	0.8147
	MLP	/	0.6475	0.6386	0.7626	0.8350	0.6068	0.6062	0.9320	0.8205

Performance and Insights

- ATHENA achieves the **highest Accuracy, F1, and AUC** on both tasks.
- Outperforms **LLM-only**, **utility-based**, and **machine-learning** models.
- Produces more stable and better-calibrated probability predictions.
- Symbolic utility discovery captures group-level patterns (e.g., time, cost, trust).
- Semantic adaptation adds individual nuances missing in other models.
- Together, the two stages enable stronger and more reliable decisions.



(a) Vaccine-uptake task. ATHENA removes all 34 cases in which the Vaccinated no booster class was previously misclassified as *Booster*, thereby preserving the integrity of booster-demand estimates.

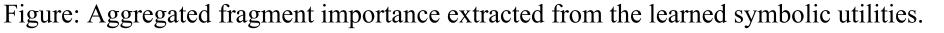
(b) Travel-mode choice task. ATHENA cuts the Swissmetro-versus-Car confusion from 83 to 6 instances, refining forecasts of low-carbon rail adoption.

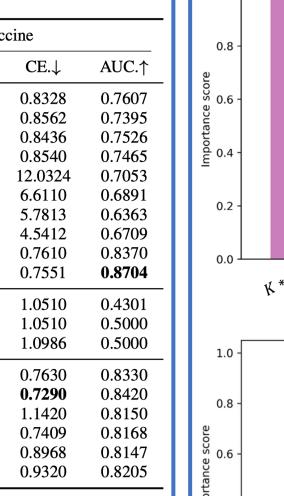
Figure: ATHENA yields improvements on classes that matter most yet were previously hard to distinguish.

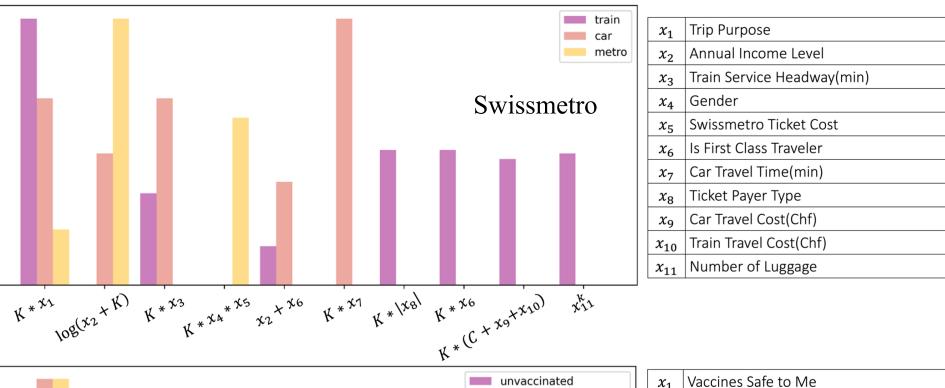
Disentangling Semantically Similar Choices

- Many baselines fail on closely related alternatives.
- Vaccine task: ATHENA removes all 34 misclassifications of Vaccinated_no_booster \rightarrow Booster.
- **Travel-mode task:** Cuts **Swissmetro** \leftrightarrow **Car** confusion from **83** \rightarrow **6**.
- Greatly improves clarity at critical boundaries where previous models struggle.
- Shows ATHENA can capture subtle behavioral signals missed by both classical models and prompt-only LLMs.

Interpretability and Case Study







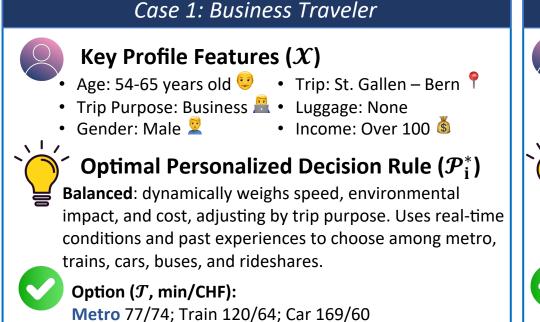
vaccinated_no_boos

Vaccine

Group-Level Structure:

Symbolic utility discovery reveals compact, interpretable formulas capturing key drivers such as age - trust interactions (vaccine) and time/purpose sensitivity (transportation).

K* x1 K* x2 K* x3 x4 - x3 (x6 + x1) x2 + x8 K* x9 108(x10) K* x6 K* x11



Metro 21/226; Train 42/209; Car 40/67

Individual-Level Semantics:

Textual templates personalize decisions by incorporating preferences, constraints, and attitudes (e.g., "Trusting Authority," "Skeptical," "Comfort-Seeking," "Cost-Saving").

Insight:

ATHENA explains why each person makes a choice—linking group-level symbolic structure to individual semantic reasoning in a transparent, human-readable form.

Conclusion

ATHENA unifies symbolic utility modeling with LLM-driven semantic adaptation to better capture personalized human decisions. Across both transportation and vaccine tasks, the framework achieves higher accuracy, better calibration, and clear interpretability, showing that combining structured utility forms with individual-level textual semantics provides a stronger and more human-centric decision model.