

Constant Bit-size Transformers Are Turing Complete

Qian Li

SICIAM,

Shenzhen Research Institute of Big Data

Yuyi Wang

CRRC Zhuzhou Institute &

Tengen Intelligence Institute

Background

- Transformers (with CoT steps) can simulate Turing machines.
- But existing proofs required larger model to handle longer inputs.

Source	Precision	Dimension	Window length	COT / TM step
Perez et al. 2021	$O(\log t)$	0(1)	O(t)	1
Bhattamishra et al. 2020	unbounded	0(1)	O(t)	1
Merrill & Sabharwal, 2024	$O(\log t)$	0(1)	O(t)	1
Li et al. 2024	0(1)	$O(\log t)$	$O(t \log t)$	$O(\log t)$
Qiu et al. 2024	$O(\log t)$	0(1)	$O(t \log t)$	$O(\log t)$

• Question: Is it necessary to continue scaling up the bit-size (=precision*#parameters) of transformers to handle longer inputs?

Our Results

• Question: Is it necessary to continue scaling up the bit size of transformers to handle longer inputs?

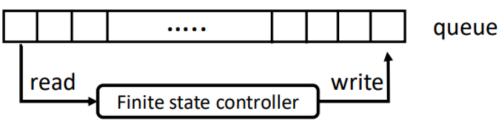
• Our answer: No

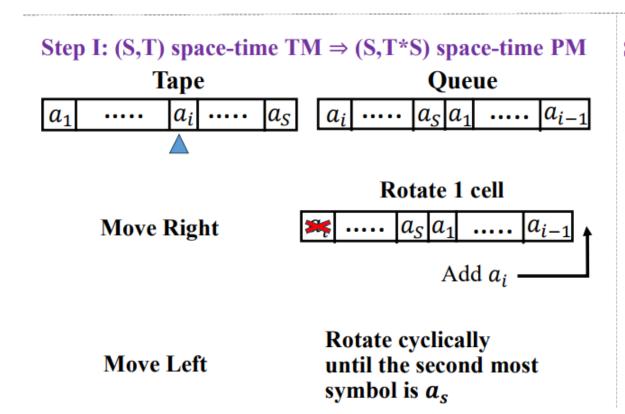
Source	Precision	Dimension	Window length	COT / TM step
Perez et al. 2021	$O(\log t)$	0(1)	O(t)	1
Bhattamishra et al. 2020	unbounded	0(1)	O(t)	1
Merrill & Sabharwal, 2024	$O(\log t)$	0(1)	O(t)	1
Li et al. 2024	0(1)	$O(\log t)$	$O(t \log t)$	$O(\log t)$
Qiu et al. 2024	$O(\log t)$	0(1)	$O(t \log t)$	$O(\log t)$
This work	0(1)	0(1)	O(s)	0(s)

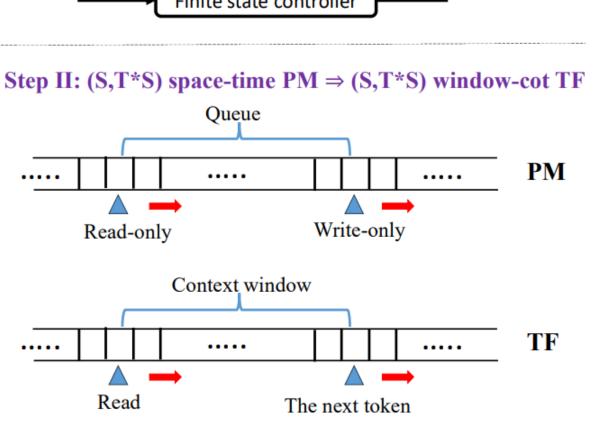
Our Result

- WINDOW[s(n)]: Decision problems solvable by a constant bit-size Transformer using O(s(n))-long window
- SPACE[s(n)]: Decision problems solvable by a Turing Machines using O(s(n)) space.

Theorem: WINDOW[s(n)] = SPACE[s(n)].


Messages:


- **Constant bit-size**: To handle longer inputs, it is unnecessary to continue scaling up the bit-size of Transformers.
- WINDOW[poly(n)]=PSAPCE: Poly(n)-long windows suffice to solve SAT, Sokoban, etc.
- **General reasoning ability**: A single, constant bit-size transformer can compute any computable function, as long as the description of a relevant TM is loaded in the prompt.


Proof Idea: $TM \Rightarrow Post Machine \Rightarrow Transformer$

What is Post Machine (PM)?

An automaton equipped with a queue.

Discussion and Future Directions

Simulation Efficiency

- Weakness 1: our constructions requires $\Omega(s(n))$ CoT steps to simulate one TM step.
- Future direction 1: whether the slowdown can be avoided.

Positional encodings

- Weakness 2: our construction employs a nonstandard relative PE. Moreover, it explicitly depends on the assumed space upper bound.
- Future direction 2: whether it can be replaced with standard PEs. and it is unclear how our PE could be inferred automatically.