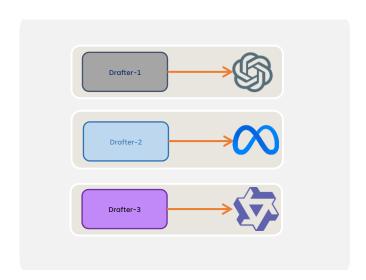
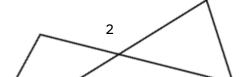


OMNIDRAFT:

A CROSS-VOCABULARY, ONLINE ADAPTIVE DRAFTER FOR ON-DEVICE SPECULATIVE DECODING

Ramchalam Kinattinkara Ramakrishnan, Zhaocong Yuan, Shaojie Zhuo, Chen Feng, Yicheng Lin, Chenzheng Su, Xiaopeng Zhang

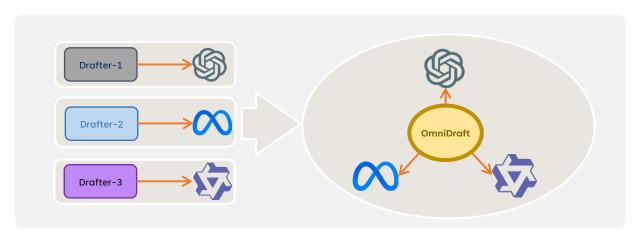

Qualcomm Canada ULC

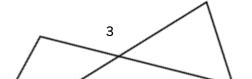

The Goal: Fast AI on every single device

- We want powerful models to run on-device (privacy, speed, offline availability).
- Bottleneck → models are huge
- Solution → Speculative Decoding (SpD)

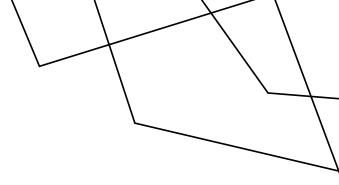
Problem: A "locked-in" system

- The draft and target models are tightly coupled → same tokenizer & vocabulary
- New target requires training new drafters → inefficient and not scalable

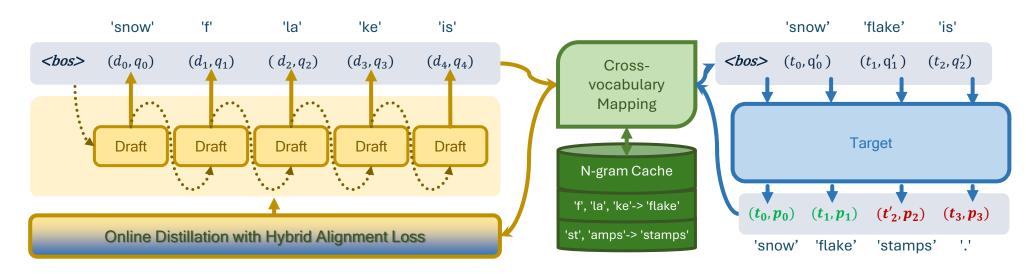



What if...

- Decouple the drafter and the target?
- A Single, universal drafter on-device to pair with **any target model?**
- A Single, universal drafter on-device to adapt to **any target application**?


Introducing: OmniDraft

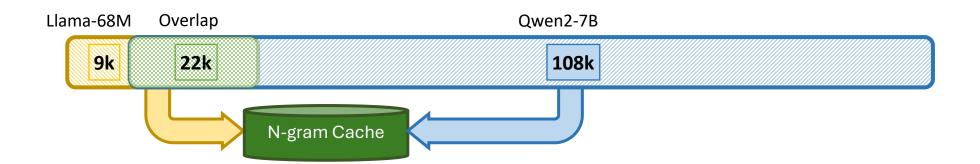
- Plug and learn drafter.
- Cross vocabulary, online adaptive to any target.


OMNIDRAFT

Contributions:

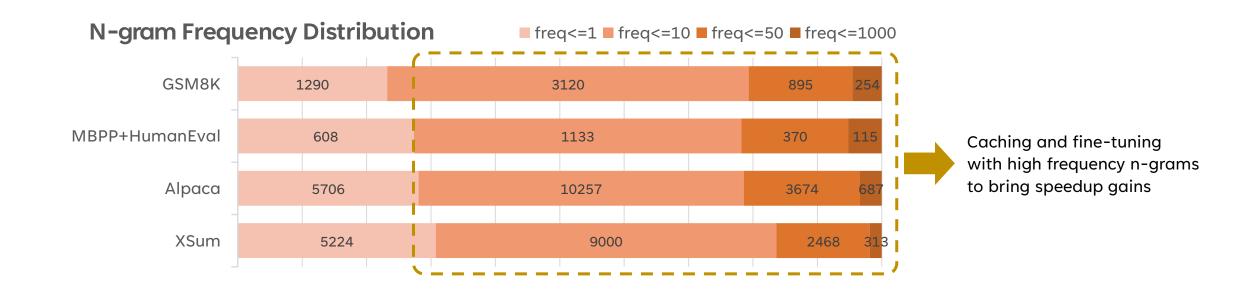
- 1. Cross-vocabulary speculative decoding via online n-gram cache
- 2. Online knowledge distillation with hybrid alignment loss

As an example, the proposal ("snowflake is") is tokenized differently by drafter and target. Cross-vocabulary SpD enables a mapping on tokens and their logits (['snow', 'f', 'la', 'ke', 'is'] \rightarrow ['snow', 'flake', 'is']) to support rejection sampling between two vocabularies.



CROSS-VOCABULARY SPD VIA ONLINE N-GRAM CACHE

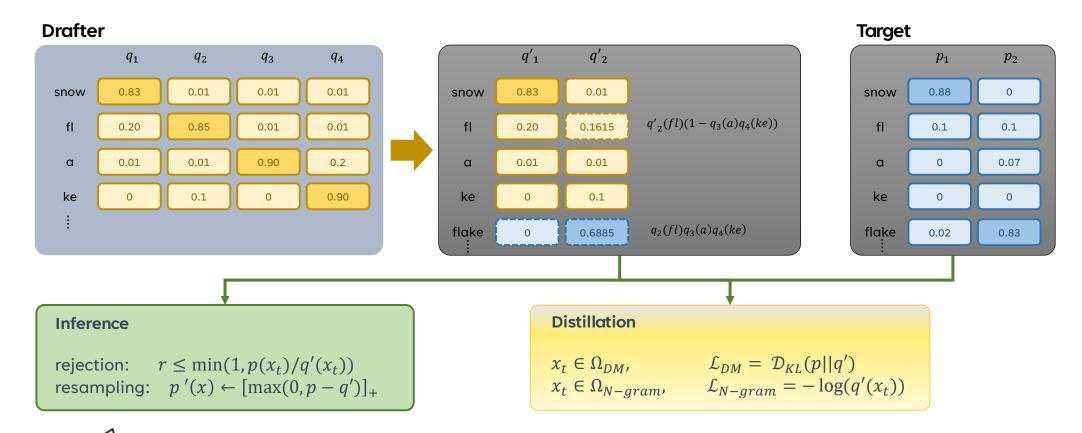
What is the n-gram cache?


- For non-coupled draft-target pair, the vocabulary overlap is generally small.
- A (non-overlapping) target token can be detokenized as several draft tokens like an n-gram.
 - For example, (target): 'flake' → (draft): 'f', 'la', 'ke'

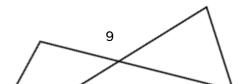


CROSS-VOCABULARY SPD VIA ONLINE N-GRAM CACHE

What do we gain from the cache?

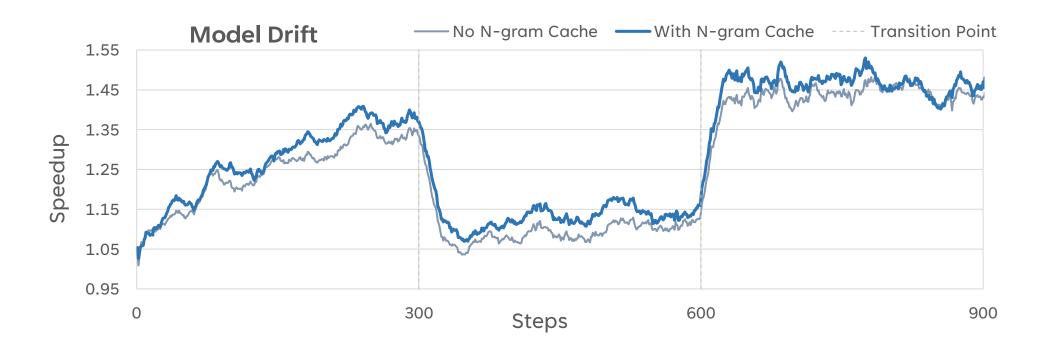

- With training-free, it enables **dynamic token merging** during cross-vocabulary SpD.
- With fine-tuning, it gives speedup boost since drafter and target are more aligned on n-gram token semantics and distribution.

ONLINE DISTILLATION WITH HYBRID ALIGNMENT LOSS


A distribution mapping transformation between the drafter and target vocabularies, converting the token and logits to a compatible space.

RESULTS

Speedup performances over math, coding and instruction following tasks using the Llama-68M drafter. Additional results scaling target model to 14B, 32B achieve up to 1.5 – 2x boost in inference speed.


Target	Method	GSM8K	MBPP+HumanEval	Alpaca	XSUM
Llama3-8B	SpD_{DM}	0.94x	1.03x	0.96x	0.91x
	\mathcal{L}_{DM}	1.58x	1.26x	1.25x	1.20x
	$\mathcal{L}_{DM} + \lambda \mathcal{L}_{N-gram}$	1.70x	1.33x	1.30x	1.24x
Qwen2-7B	SpD_{DM}	1.04x	0.91x	1.01x	0.96x
	\mathcal{L}_{DM}	1.50x	1.29x	1.25x	1.16x
	$\mathcal{L}_{DM} + \lambda \mathcal{L}_{N-gram}$	1.61x	1.36x	1.30x	1.22x

DISTRIBUTION DRIFT

task data,

Cross-vocabulary SpD is robust against distribution drifts in either **change of target model** or change in task data, recovery rate is also better due to the presence of the online cache.

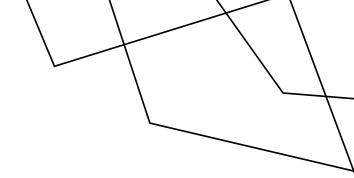
DISTRIBUTION DRIFT

Cross-vocabulary SpD is robust against distribution drifts in either change of target model or **change in task data**, recovery rate is also better due to the presence of the online cache.

CACHE MEMORY

Memory footprint of the n-gram cache after online learning is **minimal compared to model sizes**. Additional results using cache eviction policies (LRU, LFU) also show robust speedup performances.

	GSM8K	MBPP+HumanEval	Alpaca	XSUM
Training Samples	7473	910	8000	4000
Cache Size (#n-grams)	5569	2238	20339	17013
Cache Memory (MB)	1.372	0.501	4.569	3.924


FUTURE WORK

Current limitations

- Special token handling ('<think>', '<image>', ...)
- Data efficiency

Future work

- Cache optimization
- Multi-modal extension (encoder-decoder, VLMs)
- Drafter customization

