DynaAct: Large Language Model Reasoning with

Dynamic Action Spaces

Xueliang Zhao¹², Wei Wu², Jian Guan², Qintong Li¹, Lingpeng Kong¹ ¹ The University of Hong Kong ² Ant Group

Source Code: https://github.com/zhaoxlpku/DynaAct Scan QR ->

Introduction

Limitations of Current TTS Frameworks

- Static Action Spaces: Most methods rely on fixed or hand-crafted actions, limiting adaptability across tasks and domains.
- Costly Search: Large, unfiltered action spaces cause slow and inefficient **exploration** during test-time reasoning.
- Weak Action Utility: Selected actions often fail to trigger key reasoning **steps**, yielding limited gains on hard benchmarks.
- Scaling Bottleneck: Enlarging the action space typically increases computation exponentially, restricting real-world use.

Our Contributions: DynaAct

- **Dynamic Action Construction:** Builds **context-aware, compact** action spaces via a submodular objective balancing utility + diversity.
- Efficient High-Utility Reasoning: Reduces millions of candidate actions to a small, high-impact set—faster search, stronger reasoning.
- State-of-the-Art Performance: Outperforms RAP, rStar, and fewshot/fine-tuned baselines on MMLU, GPQA, GSM8K, and MATH-500.
- Plug-and-Play Design: Backbone-agnostic and compatible with any search method (i.e., MCTS), enabling future scaling.

Method

Proxy Action Space Estimation

- Extract observation-style actions from diverse reasoning traces to form a large proxy action pool \mathcal{A} .
- Train a lightweight embedding model using Q-learning over demonstrations to encode action utility.

Submodular Action Selection

- Define a submodular score $F = \alpha f_{\rm util} + \beta f_{\rm div}$, jointly measuring relevance to the current state and diversity.
- Apply a greedy maximization procedure to select a compact candidate set \mathcal{A}_t of size m for each step.
- Ensures utility-focused yet non-redundant actions with linear-time selection.

Reasoning with Dynamic Action Spaces

Evaluate actions in \mathcal{A}_t via Monte-Carlo Tree Search (MCTS) to estimate $Q(s_t,a)$.

> Overview of the proposed method

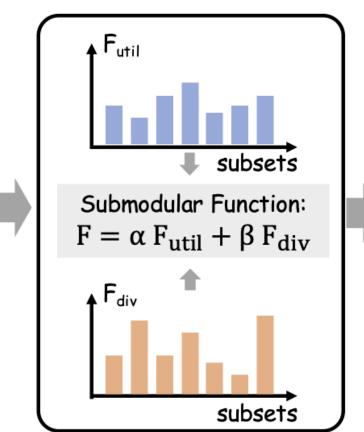
Question: Is the Earth the center of the universe?

State s_t:

Step 1: Review past assumptions. Early models placed Earth at the center, like Ptolemy's.

Action Space A:

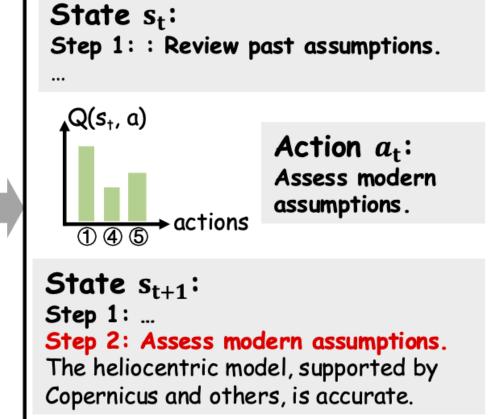
- 1 Assess modern assumptions.
- ② Think about earlier assumptions.
- 3 Consider past assumptions on centrality.
- 4 Challenge established perspectives.
- (5) Rethink core principles.



Subset A_t :

- 2 Think about earlier assumptions. 3 Consider past assumptions on centrality.
- 1 Assess modern understanding. 4 Challenge established perspectives.
- (5) Rethink core principles.
- ① Assess modern assumptions.

 Good but
 Redundant ①
- 2 Think about earlier assumptions. 4 Challenge established perspectives.
- 5 Rethink core principles.



Submodular score for each subset of A

> Experiments

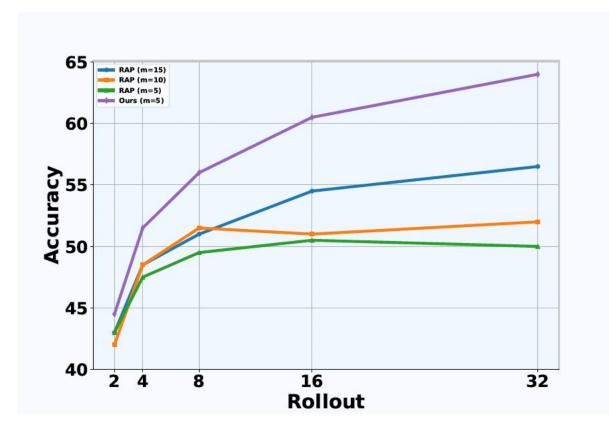
>Main Results

	(General	Rea	soning		Math
Model	MMLU	MMLU-Pro	GPQA	ARC-C	GSM8K	MATH-500
Zero-shot CoT	68.87	43.45	31.82	81.06	76.12	45.40
SC@maj16	69.66	49.36	34.34	80.63	86.66	52.00
RAP	69.46	48.70	38.89	85.41	87.79	51.60
rStar	68.61	48.81	36.87	86.43	87.11	54.20
DYNAACT	70.22	51.40	39.39	88.31	89.16	61.00

> Ablation Study

Model	ARC-C	MATH-500
DYNAACT (full)	88.31	61.00
utildivq-learningsubmodular	87.63 86.52 87.80 85.15	53.40 53.80 55.80 52.00

> Compactness Study



> Reasoning Performance Across Difficulty

	Level 3	Level 4	Level 5
rStar	72.38	50.78	15.67
DynaAct	76.19	58.59	31.34
- util	68.57	52.34	17.16
- q-learning	71.43	53.13	20.90

>Action Diversity Analysis

Model	Diversity	Accuracy
Ours	0.73	31.34
- div	0.49	24.63

> Resource Consumption Analysis

Method	Raw Time (↓)	Accuracy (†)
Zero-shot CoT	1.68s	45.40
SC@maj16	26.88s	52.00
RAP	64.51s	51.60
rStar	54.72s	54.20
DYNAACT	57.60s	61.00

For inquiries, please contact:

xlzhao22@connect.hku.hk