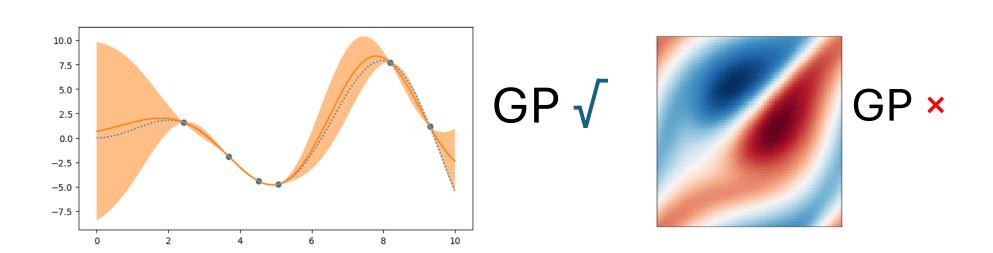
Stochastic Process Learning via Operator Flow Matching

Yaozhong Shi , Zachary E. Ross, Domniki Asimaki - Caltech Kamyar Azizzadenesheli - Nvidia

Stochastic Process Learning

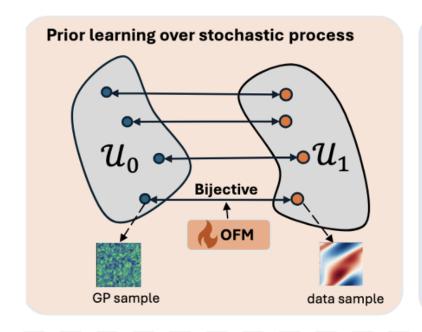
- Stochastic processes are foundational to many domains
- Serve as prior over functions, and provide density of any finite collections of points
- Many processes are not well described by Gaussian Processes
 (GP) -> we need more general stochastic process learning (SPL)

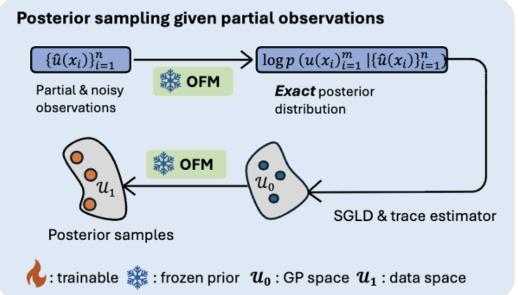


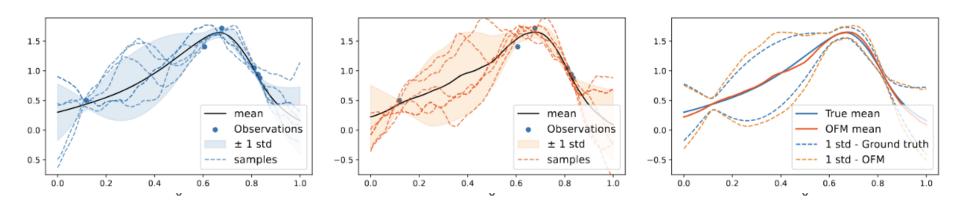
General stochastic process regression

- > A long-standing challenge kept researchers busy for decades
- > Core difficulties:
- (1) Learning a general stochastic-process prior from historical data with an expressive enough model
- (2) Deriving both the exact posterior distribution and an efficient sampling scheme
- > Prior work:
- (1) GPs: not expressive, limited to GP case
- (2) Deep GPs & Neural Process (NPs): expressive but not exact

Two-phase strategy







Prior Learning – Flow Matching in Hilbert Space

➤ Traditional flow matching:

- (1) learn invertible mapping between ${\bf q}_0=\mathcal{N}(0,I)$ and the target data distribution ${\bf q}_1$
- (2) Lebegue measure involved, no restriction to the modal architecture for learning the vector field
- ➤ Infinite-dimensional Flow Matching:
- (1) learn invertible mapping between a Gaussian measure $\nu_0=\mathcal{N}(0,\mathcal{C})$ and the target data measure ν_1
- (2) Probability measure defined in Hilbert space involved, neural operator is is required for learning the vector field
- (3) The covariance operator C is trace-class, (white noise kernel is not trace-class)

Generalizing FM to Stochastic Process

- Extend neural operator to maps between collections of points
- Generalizing FM to stochastic process is naturally induced from FM in Hilbert space
- ➤ Kolmogorov extension theorem (KET) is satisfied
- ➤Intuitive explanation:

For any n and points $\{x_1, x_2, ..., x_n\} \subset D$, the flow transports reference finite-dimensional distribution $p_0 = \mathcal{N}(0, K(\{x_1, ..., x_n\}))$ to the p_1 , where p_1 is the marginalization of v_1 on points $\{x_1, x_2, ..., x_n\}$

Likelihood Estimation and Bayesian Universal **Functional Regression**

Likelihood estimation

Hutchinson Trace estimator (unbiased)

$$\nabla \cdot \mathcal{G}_{\theta}(u_t) = \mathbb{E}_{p(\varepsilon)}[\varepsilon^T \frac{\partial \mathcal{G}_{\theta}(u,t)}{\partial u} \varepsilon] \quad \longleftarrow \quad \mathbf{O}(m) \ \ \text{time complexity}$$

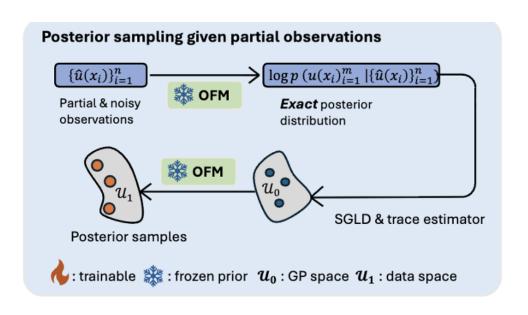
> Posterior distribution

Proposition 3.1. Given noisy observations $\{\widehat{u}(x_i)\}_{i=1}^n$, the posterior distribution is

$$\log \mathbb{P}\left(\{u(x_i)\}_{i=1}^m \middle| \{\widehat{u}(x_i)\}_{i=1}^n\right) = -\frac{\sum_{i=1}^n ||\widehat{u}(x_i) - u(x_i)||^2}{2\sigma^2} + \log \mathbb{P}\left(\{u(x_i)\}_{i=1}^m\right) + C$$

Observations Likelihood

Posterior Sampling with Stochastic Gradient Langevin Dynamic



ightharpoonup Sample in the GP space \mathcal{U}_0 , rather than the data sample \mathcal{U}_1

➤ Rely on the Hutchinson trace estimator, which requires many noise samples for divergence evaluation

Algorithm 1 Posterior sampling with SGLD

Input and Parameters: Logarithmic posterior distribution $\log \mathbb{P}_{\theta}$, temperature T, learning rate η_t , MAP \overline{a}_{θ} , burn-in iteration b, sampling iteration t_N , total iteration N.

```
1: Initialization: a_{\theta}^{0} = \overline{a}_{\theta}

2: for t = 0, 1, 2, ..., N do

3: Compute gradient of the posterior: \nabla_{a_{\theta}} \log \mathbb{P}_{\theta}

4: Update a_{\theta}^{t+1}: a_{\theta}^{t+1} = a_{\theta}^{t} + \frac{\eta_{t}}{2} \nabla \log \mathbb{P}_{\theta} + \sqrt{\eta_{t}T} \mathcal{N}(0, I)

5: if t \geq b then

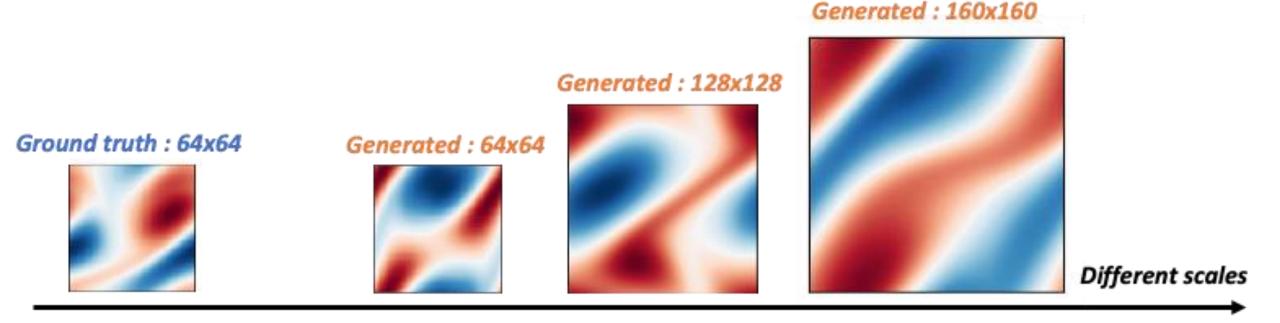
6: Every t_{N} iterations: obtain new sample a_{\theta}^{t+1}, and corresponding u_{\theta}^{t+1}

7: end if

8: end for
```

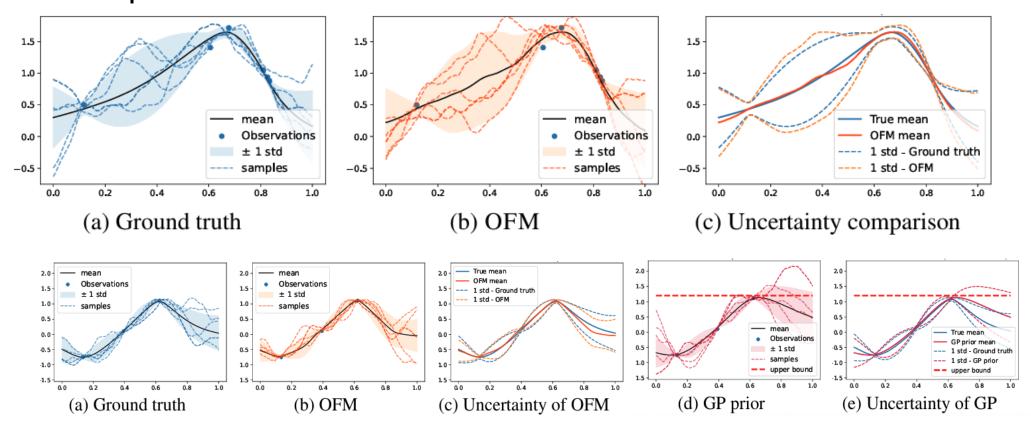
➤ Requires integration over the entire ODE trajectory and can be GPU-memory intensive

Results: Zero-shot Generation with Learnt Prior



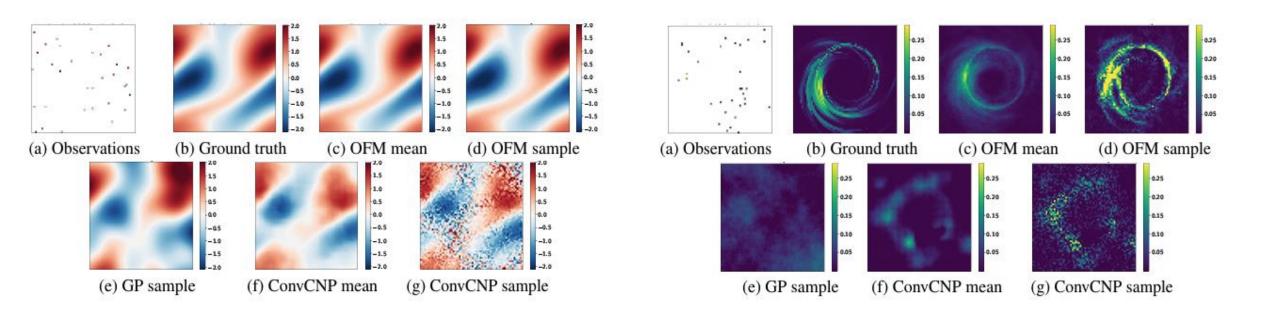
Results – Functional Regression Performance

➤ Reproduce exact GP regression if prior is Gaussian, provide correct posterior for non-GP case



Results – Functional Regression Performance

Significantly better than baselines for complicated non-Gaussian regression cases



Results – Functional Regression Performance

➤ Performance against baslines

$Dataset \rightarrow$	1D GP		2D GP		1D TGP	
$Algorithm \downarrow Metric \rightarrow$	SMSE	MSLL	SMSE	MSLL	μ	σ
GP prior	-	-	-	-	$6.4 \cdot 10^{-2}$	$1.6 \cdot 10^{-2}$
NP	$6.1 \cdot 10^{-1}$	$4.5\cdot 10^{\ 0}$	$1.7 \cdot 10^{-1}$	$2.1\cdot 10^{\ 0}$	$1.0 \cdot 10^{-1}$	$1.9 \cdot 10^{-2}$
ANP	$5.1 \cdot 10^{-1}$	$9.8 \cdot 10^{-1}$	$1.6 \cdot 10^{-1}$	$1.1\cdot 10^{\ 0}$	$1.4 \cdot 10^{-1}$	$1.7 \cdot 10^{-2}$
ConvCNP	$5.6 \cdot 10^{-1}$	$2.7 \cdot 10^{-1}$	$1.7 \cdot 10^{-1}$	$4.5 \cdot 10^{-1}$	$1.6 \cdot 10^{-2}$	$2.1 \cdot 10^{-3}$
DGP	$4.1 \cdot 10^{-1}$	$6.8 \cdot 10^{-2}$	$1.8\cdot 10^{-0}$	$4.2\cdot 10^{~0}$	$4.9 \cdot 10^{-1}$	$1.4 \cdot 10^{-2}$
DSPP	$4.7 \cdot 10^{-1}$	$6.5\cdot 10^{\ 0}$	$1.9 \cdot 10^{-1}$	$6.6\cdot 10^{~0}$	$1.1 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$
OpFlow	$5.0 \cdot 10^{-1}$	$2.0 \cdot 10^{-1}$	$1.4 \cdot 10^{-1}$	$1.1\cdot10^{-1}$	$1.3 \cdot 10^{-2}$	$3.9 \cdot 10^{-3}$
$\mathbf{OFM}(\mathbf{Ours})$	$4.1\cdot10^{-1}$	$5.5\cdot10^{-2}$	$1.3\cdot 10^{-1}$	$1.6 \cdot 10^{-1}$	$5.2\cdot10^{-3}$	$9.5\cdot 10^{-4}$

Summary and conclusion

- Expressive prior over functions: A neural operator learns a continuous flow that transports a reference GP to data-like functions, giving an explicit, tractable-density prior.
- Function-level regression: treat functions as first-class objects rather than mere pointwise values (unlike NPs), predictions are consistent across resolutions and arbitrary query sets.
- ➤ Invertible & Bayesian: The flow is invertible, enabling change-of-variables likelihoods and principled Bayesian regression with calibrated uncertainty from few observations.