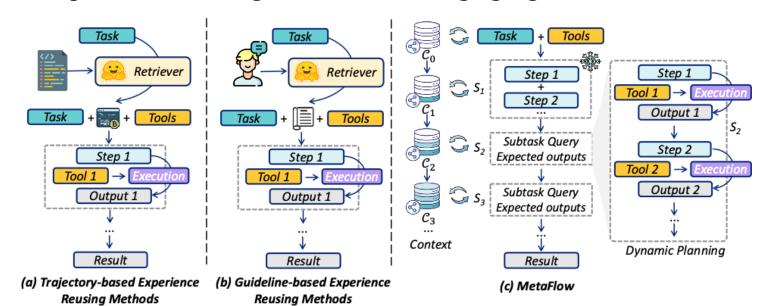


Shengda Fan


2025.11.07

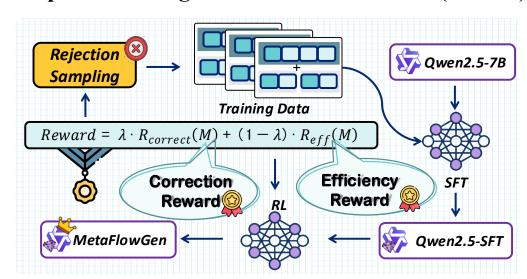
Introduction

Problem: Existing agent experience reuse methods insert historical trajectories or natural language guidance into LLM prompts, which may introduce irrelevant details or miss key procedural steps.

Goal: Introduce a tree structure to organize historical experience and refine a generalizable MetaFlow through layer-by-layer abstraction for efficient task matching and reuse.

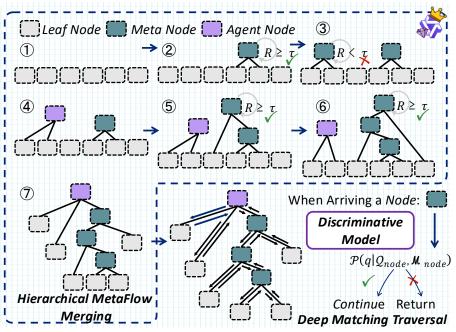
Core Idea: Define an executable MetaFlow structure, train a MetaFlowGen generator with verifiable reward signals, and build an experience tree using a hierarchical merging algorithm for efficient task reuse.

Methodology


• The input to MetaFlowGen consists of task descriptions, MetaFlow, and tool descriptions for two samples, while the output is the MetaFlow and meta-task.

$$\mathcal{M}, \mathcal{Q} = \pi_{\theta} \left(q_1, q_2, m_1, m_2, \mathcal{A} \right)$$

- This approach uses reinforcement learning to train the MetaFlowGen. The training process is divided into two stages:
- SFT cold-start using data obtained from rejection sampling.
- GRPO directly optimizes the model's reward.


The reward for each sample is the weighted sum of correctness (correct) and efficiency (Efficiency)

rewards.

Methodology

- To improve inference efficiency, this approach first inductively organizes historical data into an experience tree. Inspired by hierarchical clustering, we iteratively merge the two most similar nodes and remove low-quality nodes until a complete tree structure is formed.
- During inference, starting from the root node, the deepest node capable of solving the task is identified, and the corresponding MetaFlow is instantiated.

The Process of MetaFlowLLM

Algorithm 1 Hierarchical MetaFlow Merging

Require: Leaf nodes $\mathcal{D} = \{(q_i, m_i)\}$, distance metric $d(\cdot, \cdot)$, MetaFlowGen θ , correctness threshold τ **Ensure:** Hierarchical experience Tree \mathcal{T} 1: **Initialize:** Initialize the set of nodes $\mathcal{N} \leftarrow \mathcal{D}$ 2: while $|\mathcal{N}| > 1$ do Select the most similar node pair: From \mathcal{N} , select two most similar nodes n_1, n_2 based on the distance metric $d(\cdot, \cdot)$ Generate candidate MetaFlow: Merge n_1 and n_2 using the MetaFlowGen θ to produce a candidate MetaFlow M Evaluate its correctness: Compute the correctness reward R_{correct} for \mathcal{M} if $R_{\text{correct}} >= \tau$ then Use \mathcal{M} as the new parent node to merge n_1 and n_2 Remove n_1, n_2 from \mathcal{N} and add \mathcal{M} to \mathcal{N} 8: 9: else

12: end if

Use pure-agent node as the new parent node to merge n_1 and n_2

13: end while

10:

- 14: Final merge: If there are more than one pure-agent nodes, merge them into a single top-level pure-agent node
- 15: **return** The complete experience Tree \mathcal{T}

Remove n_1, n_2 from \mathcal{N}

Experiments

- On AppWorld, MetaFlow's TGC improvement is 33.1% and 31.6%, outperforming all baseline methods.
- On WorkBench, MetaFlow improves accuracy by an average of 6.16% and reduces side effects by 4.13%, outperforming all baseline methods.

Model	Agent Type	Configuration							
1120402	rigent type	Base	w/ Traj.	w/ Guideline	w/ MetaFLow				
Qwen2.5-7B	Reflexion ReAct	7.6 6.4	$\frac{32.7}{37.4}$	13.5 17.0	37.4 43.9				
Qwen2.5-32B	Reflexion ReAct	12.9 22.2	33.9 49.1	22.8 38.6	43.9 50.9				
GPT-4o-mini	Reflexion ReAct	13.5 7.0	37.4 22.2	20.5 7.0	45.6 35.7				

Model	Analytics		Calendar		CRM		Email		PM		MD		Avg	
	%acc↑	%se↓	%acc↑	%se↓	%acc↑	%se↓	%acc†	%se↓	%acc†	%se↓	%acc↑	%se↓	%acc↑	%se↓
GPT-40	30.8	53.8	53.0	19.7	30.9	14.5	32.8	25.9	8.16	0.0	16.3	48.9	27.2	33.1
Qwen2.5-7B	18.2	60.3	27.6	35.5	16.0	30.5	9.31	43.8	8.57	6.12	9.39	53.9	14.3	43.0
w/ Traj.	30.8	<u>46.2</u>	18.2	48.5	18.2	32.7	15.5	46.6	14.3	12.2	8.16	57.1	16.3	44.8
w/ Guideline	21.8	51.3	37.9	<u>47.0</u>	20.0	52.7	<u>15.5</u>	55.2	10.2	6.12	8.16	60.5	17.4	49.5
w/ MetaFlow	26.9	43.6	25.8	50.0	23.6	34.5	10.3	55.2	<u>14.3</u>	18.4	9.52	57.8	<u>17.2</u>	46.8
Qwen2.5-32B	6.41	88.5	57.6	24.2	12.7	43.6	27.6	24.1	6.12	0.0	12.2	61.9	19.2	47.2
w/ Traj.	25.6	70.5	37.9	40.9	41.8	20.0	8.62	58.6	20.4	12.2	15.0	60.5	23.2	49.0
w/ Guideline	19.2	79.5	59.1	21.2	27.3	23.6	31.0	36.2	10.2	2.0	15.0	57.8	25.2	43.3
w/ MetaFlow	<u>24.4</u>	69.2	59.1	19.7	27.3	23.6	37.9	32.8	<u>12.2</u>	4.1	18.4	55.8	28.3	40.4
GPT-40-mini	11.5	44.9	48.5	30.3	21.8	36.4	24.1	58.6	8.16	6.12	12.2	56.5	19.6	43.0
w/ Traj.	12.8	44.9	39.4	25.8	<u>27.3</u>	36.4	20.7	48.3	12.2	12.2	14.3	57.1	19.9	41.9
w/ Guideline	12.8	43.6	47.0	37.9	27.3	30.9	31.0	51.7	12.2	4.10	12.9	60.5	21.9	43.5
w/ MetaFlow	19.2	30.8	53.0	15.2	16.4	23.6	31.0	46.6	16.3	4.08	22.4	51.7	26.1	33.6

