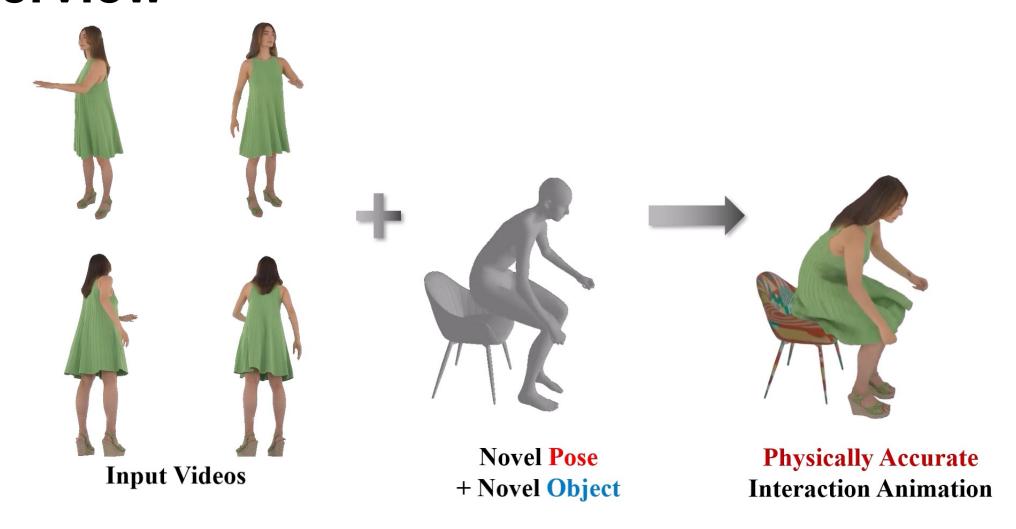

MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics


Changmin Lee, Jihyun Lee, Tae-Kyun Kim

Overview

Create **3D Gaussian avatars** from **multi-view videos**, that support **physically accurate** and **robust animations**, especially for loose garments

Motivation

- Realistic Avatars require both photorealistic rendering and physically plausible motion.
- However, existing methods achieve **only one** either realistic appearance *or* physical accuracy.

^[1] Zhan *et al.*, Real-time High-fidelity Gaussian Human Avatars with Position-based Interpolation of Spatially Distributed MLPs, In *CVPR*, 2025. [2] Zheng *et al.*, PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations, In *ECCV*, 2024.

Key Idea

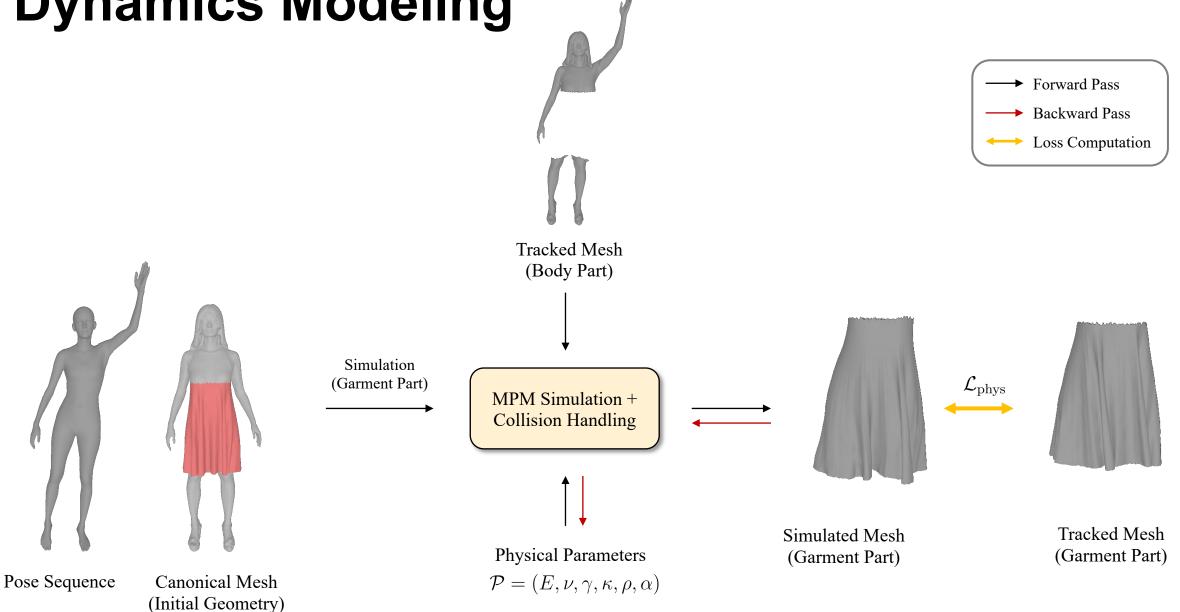
We need avatars that are:

1. Physically accurate

2. Simulation-robust

3. Photorealistically rendered

We achieve this by:

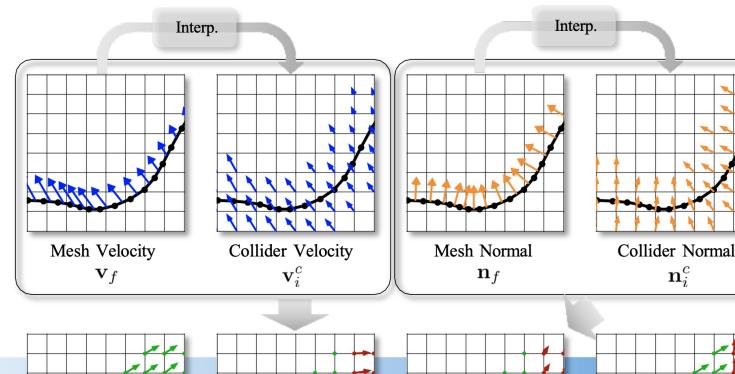

- 1. Physics-based simulation for garments
 - ➤ MPM [3] with anisotropic constitutive model [4]
- 2. Robust mesh-based collision handling
 - Robust collision with arbitrary meshes
- 3. Hybrid representation (Mesh + 3DGS [5])
 - Mesh for dynamics, 3DGS for appearance

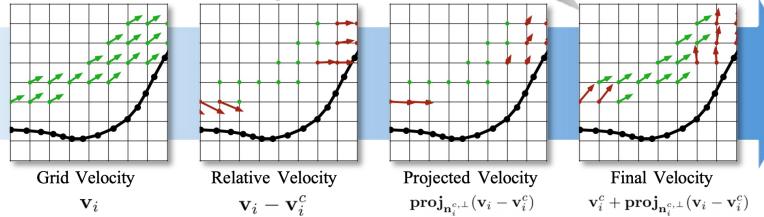
^[3] Jiang et al., The material point method for simulating continuum materials., In SIGGRAPH 2016 Course, 2016.

^[4] Jiang et al., Anisotropic elastoplasticity for cloth, knit and hair frictional contact., In SIGGRAPH, 2017.

^[5] Kerbl et al., 3D Gaussian Splatting for Real-Time Radiance Field Rendering, In SIGGRAPH, 2023.

Dynamics Modeling


Dynamics Modeling


Garment Grid Velocity (No collision)

Garment Grid Velocity (Collision)

Collider Velocity

Collider Normal

 \mathbf{n}_i^c

Appearance Modeling Mesh-GS Deformation Rendered Avatar Canonical GS Deformed GS $\mathcal{L}_{ ext{photo}}$ Shadowing Network [6] Forward Pass **Backward Pass** Loss Computation Reference Image Tracked Mesh Quasi-Shadow **Ambient Occlusion**

Experimental Comparisons

MPMAvatar (Ours) Ground Truth PhysAvatar^[2] Fluttering cloth motion FLess natural cloth similar to the ground truth motion

Experimental Comparisons

Ground Truth PhysAvatar^[2] MPMAvatar (Ours) High-frequency Blurred texture texture details

Experimental Comparisons

Method	Geometry		Appearance		
	$CD(\times 10^3) \downarrow$	F-Score ↑	LPIPS ↓	PSNR ↑	SSIM ↑
	(:	a) Results on ActorsI	IQ dataset.		
ARAH	1.12	86.1	0.055	28.6	0.957
TAVA	0.66	92.3	0.051	29.6	0.962
GS-Avatar	0.91	89.4	0.044	30.6	0.962
PhysAvatar	0.55	<u>92.9</u>	0.035	30.2	$\overline{0.957}$
MPMAvatar (Ours)	$\overline{0.42}$	95.7	$\overline{0.033}$	32.0	0.963
(b) Results on 4D-DRESS dataset.					
PhysAvatar	0.37	96.6	0.022	33.2	0.976
MPMAvatar (Ours)	$\overline{0.33}$	97.2	0.018	34.1	0.977

Method	Success Rate (%) ↑	Simulation Time (s) ↓
PhysAvatar	37.6	170.0
MPMAvatar (Ours)	100.0	1.1

Application: Zero-Shot Scene Interaction

Chair: Mesh collider *Sand*: MPM particles

(granular material)

Conclusion

- We presented MPMAvatar, a framework for creating 3D human avatars from multi-view videos
 that supports (1) physically accurate and robust animation, as well as
 (2) high-fidelity rendering.
- Our Gaussian Splat-based avatar is animated based on a carefully tailored MPM-based simulator designed for effective garment dynamics modeling, enabling physically grounded animations.

MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics

Project Page

