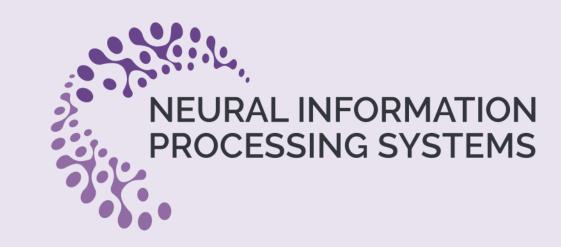
Approximate Gradient Coding for Distributed Learning with Heterogeneous Stragglers

operate (2) and (3)

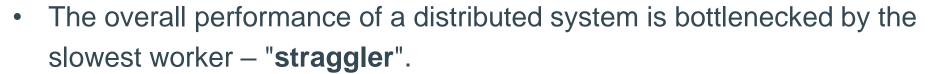
Heekang Song¹, Wan Choi²

- ¹ Korea Advanced Institute of Science and Technology
- ² Seoul National University



Introduction and Motivation of Approximate Gradient Coding for Distributed Learning

- Recent large-scale AI models like ChatGPT and Gemini necessitate distributed learning, which operates through the following three phases.
- ① Data distribution: n data partitions $D_1, D_2, ..., D_n$ to k workers $W_1, W_2, ..., W_k$.
- ② Local gradient computation: compute $g_i^{(t)} = \nabla L(D_i, \beta^{(t)})$ and transmit partial gradients.
- ③ Gradient sum retrieval: compute $\beta^{(t+1)} = \beta^{(t)} \gamma_t \cdot \sum_{i=1}^n g_i^{(t)}$ and distribute updated model.



- Without coding and data redundancy, the gradient updates are performed using only a subset of the gradients in the presence of stragglers. (Fig. 1 (left))
- With gradient coding and data redundancy, the gradient updates can be performed using the full gradient.
 Computation redundancy provides the coding opportunities. (Fig. 1 (right))

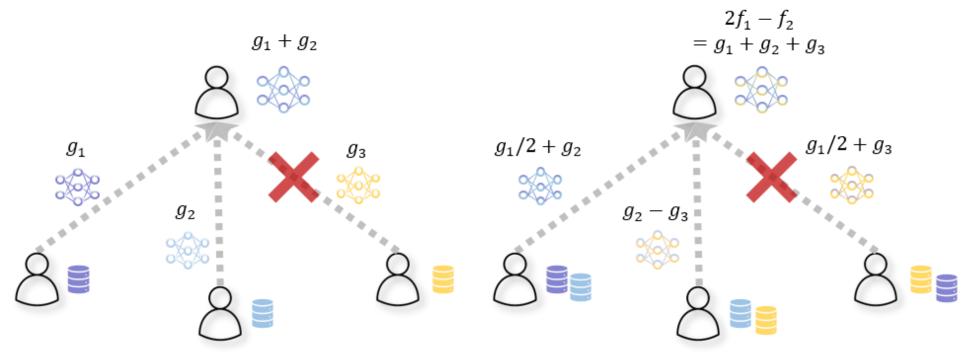


Fig .1: Motivating example of gradient coding.

- *Gradient coding* explores coding techniques that ensure the recovery of the aggregated gradient at master node, in the presence of stragglers.
- Limitation of prior work:
- ✓ <u>Exact gradient coding</u>: Requires knowing the number of stragglers in advance and suffers from high data replication (computation load).
- ✓ <u>Approximate gradient coding</u>: More practical, but most methods focus on only one of two goals: (1) minimizing residual error or (2) ensuring unbiasedness.

Estimated Gradient Update

- ✓ Let \mathcal{I}_i be the indicator variable, where $\mathcal{I}_i = 1$ if worker i is non-straggler, with straggler probability p_i .
- Vorker i computes encoded message $f_i^{(t)}$ with encoding coefficient a_{ij} (a_{ij} = 0 if worker i has no data j): $f_i^{(t)} = \sum_{j=1}^n \mathcal{I}_i \cdot a_{ij} \cdot g_j^{(t)}$
- The master node recovers the estimated gradient $\hat{g}^{(t)}$ at iteration t (instead of true gradient $g^{(t)}$): $\hat{g}^{(t)} = \sum_{i=1}^k w_i \cdot f_i^{(t)}$, where w_i is decoding coefficient, and update the model parameters as $\beta^{(t+1)} = \beta^{(t)} \gamma_t \cdot \hat{g}^{(t)}$.

Optimally Structured Gradient Coding

Optimal Structure of Gradient Coding

• Our main idea lies in the minimization of residual error under unbiased gradient estimator:

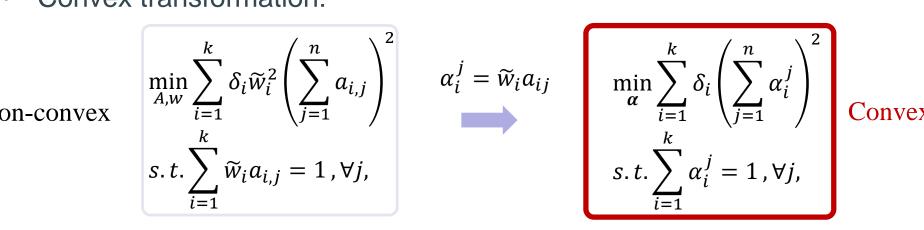
$$\min_{\substack{A,w\\ s.t.}} \mathbb{E}\left[\left\|g^{(t)} - \hat{g}^{(t)}\right\|_{2}^{2}\right]$$

$$\text{What is true gradient?}$$

- ✓ Impractical to obtain true gradient and optimize codes at each iteration.
- ✓ Suppose that there exists a constant C such that $\left\|g_{j}^{(t)}\right\|_{2}^{2} \leq C$, $\forall j \in [1:n]$, and gradient estimator is unbiased. Then, we have

$$\mathbb{E}\left[\left\|g^{(t)} - \hat{g}^{(t)}\right\|_{2}^{2}\right] \leq C\left[\sum_{i=1}^{k} p_{i}(1 - p_{i}) \cdot w_{i}^{2}\left(\sum_{j=1}^{n} a_{i,j}\right)^{2}\right].$$

Convex transformation:



where $\widetilde{w}_i = (1 - p_i) \cdot w_i$ and $\delta_i = \frac{p_i}{(1 - p_i)}$

• By using Karush-Kuhn-Tucker (KKT) conditions, the optimal structure of optimization problem satisfies the conditions:

1)
$$\sum_{j=1}^{n} \alpha_i^j = Y_i, \forall i \in [1:k]$$
 and 2) $\sum_{i=1}^{k} \alpha_i^j = 1, \forall j \in [1:n]$ where $Y_i = \delta_i^{-1} \cdot \frac{n}{\sum_j \delta_j^{-1}}$ and $\delta_i^{-1} = \frac{1-p_i}{p_i}$ for all $i \in [1:k]$.

Optimally Structured Gradient Code Construction

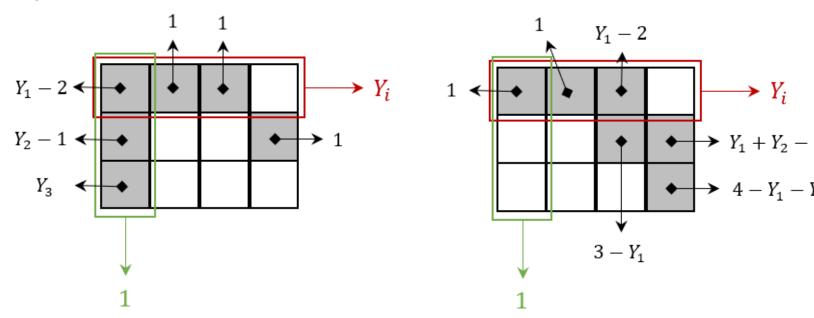


Fig. 2: Illustrative example of proposed schemes: (left) Scheme I and (right) Scheme II.

- Scheme I: A single, specific data partition (D_1) is shared by all workers and all other partitions are assigned exclusively to individual workers.
- **Scheme II**: Consecutive workers share a single overlapping data point, and the final worker has only one data partition.
- \checkmark Set $\alpha_i^j = 1$ for exclusive partitions, and set values for shared partitions to satisfy the row-sum constraint $\sum_i \alpha_i^j = Y_i$.
- Computation load (data replication for each worker): $\frac{n+k-1}{n} < 2 \ (\because n > k)$.
- Construction of A and w
- ✓ Since $\alpha_i^j = \widetilde{w}_i a_{ij}$, we can construct $a_{ij} = \alpha_i^j / \widetilde{w}_i$ and $w_i = \widetilde{w}_i / (1 p_i)$ using random generation of \widetilde{w} .

Experiments

Convergence Graphs for COCO Dataset (MobileNetv3)

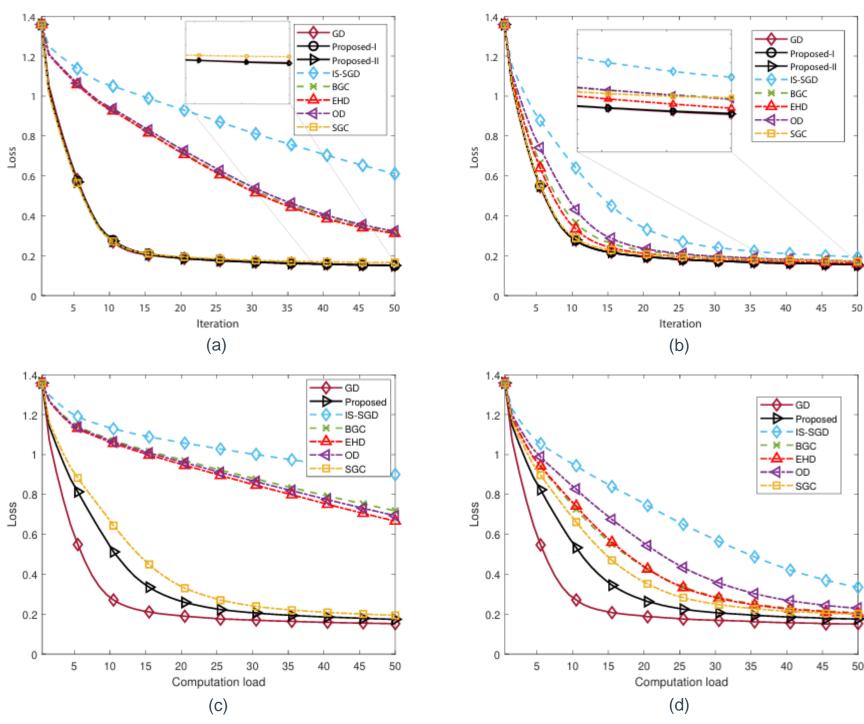


Fig. 3: Convergence graph with respect to the iterations ((a) $\tau_{th} = 1.1$ and (b) $\tau_{th} = 1.5$), and with respect to the computation load ((c) $\tau_{th} = 1.1$ and (d) $\tau_{th} = 1.5$) when k = 10.

• Straggler model: suppose τ_{th} denote the response time limit for each training iteration. \rightarrow worker i straggles if local processing time $\tau_i > \tau_{th}$ $p_i = e^{-\psi_i(\tau_{th}-1)}$

where ψ_i represents the straggling parameter obtained by Uniform rand.

• **Baselines**: Centralized learning-based GD, Ignore-Stragglers SGD (ISSGD), Bernoulli Gradient Coding (BGC) [8], ERASUREHEAD (EHD) [9], Optimal Decoding (OD) [11], Stochastic Gradient Coding (SGC) [12].

Visual Representations: COCO Object Detection

Fig. 4: Detected objects of sampled image.