

Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and Empirical Findings

Qiong Wu¹², Wenhao Lin¹², Yiyi Zhou^{12*}, Weihao Ye¹, Zhanpeng Zeng¹, Xiaoshuai Sun¹², Rongrong Ji¹²

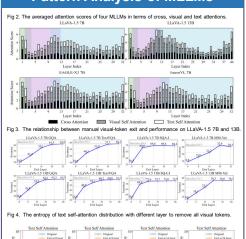
1Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, School of Informatics, Xiamen University, China.

²Institute of Artificial Intelligence, Xiamen University, China

INTRODUCTION

Multimodal Large Language Models (MLLMs) integrate visual and textual understanding, yet their inference is computationally expensive due to redundant visual tokens. Existing efficiency methods often prune tokens heuristically, lacking in-depth exploration of the intrinsic behaviors of MLLMs. We propose Dynamic Visual Token Exiting (DyVTE), which adaptively removes redundant visual tokens early, improving efficiency with minimal accuracy loss.

Text Self Attn


Left: Illustration of three main stages observed in MLLMs.

Right: The impact of visual tokens on the text self attention at the multimodal reasoning stage.

CONTRIBUTION

- We study the problem of visual redundancy from the perspective of MLLMs' behaviors, and reveal the dependency between text and visual tokens.
- 2. Based on the empirical findings, we propose a novel and effective approach to reduce visual redundancy of MLLMs, termed dynamic visual-token exit (DyVTE), which can dynamically evaluate and schedule the contributions of visual tokens to multimodal reasoning.
- 3. The extensive experiments on a set of MLLMs well validate the motivation and effectiveness of DyVTE, also providing insights into the principle of MLLMs

Pattern Analysis of MLLMs

Dynamic Visual-token Exiting

DyVTE uses lightweight hyper-networks to perceive the text token status of MLLMs and then adaptively judge the right time to remove all visual tokens.

$$\mathbf{p} = Softmax(GELU([avg(\mathbf{T}_{1:t-1}^{(k)}), \mathbf{T}_{t}^{(k)}]\mathbf{W}_{1})\mathbf{W}_{2})$$

When the prediction p is exit, DyVTE will remove all visual tokens after this layer, while the text ones are kept in the rest layers of MLLMs, denoted by $P'_i = G_{i+1,i}/(\mathbf{T}^{(i)})$

Optimization

The objective of DyVTE can be defined by $\underset{\sim}{\operatorname{argmin}} d(P, P'_l)$

We compare the discrete outputs of the MLLM with and without DyVTE, e.g., the answer

$$\mathbf{y} = \begin{cases} 1, & A'_l = A, \\ 0, & A' \neq A \end{cases}$$

Where \mathcal{N}_i denotes the answer predicted with visual-token exit at the I-th layer. Besides, to make this supervision more robust, we also consider the prediction uncertainty as a regularization term, thereby , making the MLLM behaviors closer to the default inference:

$$\mathbf{y} = \begin{cases} 1, & A'_l = A \land \rho'_c < \tau, \\ 0, & otherwise. \end{cases}$$

Here, ρ_c' denotes the prediction uncertainty valued by cross-entropy and multiplied by a scaling factor.

With this supervision, the hyper-networks in DyVTE can be optimized by the cross-entropy loss:

$$\mathcal{L}_D = -(\mathbf{y} \cdot \log(\mathbf{p}_1) + (1 - \mathbf{y}) \cdot \log(\mathbf{p}_0)).$$

EXPERIMENT

Method	SEED		MME		MMB		PO		MM-Vet	
Method	Accuracy †	TFLOPs 1	Score †	TFLOPs 1	Accuracy †	TFLOPs 1	Accuracy †	TFLOPs \	Accuracy †	TFLOPs 1
EAGLE-X5 7B EAGLE-DyVTE 7B	73.9 73.6 (-0.4%)	47.8 43.0 (-10.0%)	1528.0 1581.7 (+3.5%)	27.8 20.3 (-27.0%)	68.4 68.8(+0.6%)	29.6 23.7 (-19.9%)	88.8 88.4 (-0.5%)	27.7 20.0 (-27.8%)	37.4 37.8 (+1.1%)	27.6 23.5 (-14.9%)
VILA 7B VILA-DyVTE 7B	61.7	9.2 5.9 (-35.9%)	1489.2 1503.1 (+0.1%)	8.9 4.6 (48.3%)	69.9 69.8 (-0.1%)	9.5	86.3 85.6 (-0.8%)	8.8 4.5 (-48.9%)	36.3 36.7 (+1.1%)	8.7 6.6 (-24.1%)
InternVL 7B InternVL-DyVTE 7B	59.2 59.1 (-0.2%)	16.0 11.9 (-25.6%)	1525.1 1474.1 (-3.3%)	15.5 10.9 (-29.7%)	64.6 64.4 (-0.3%)	16.2 12.0 (-25.9%)	86.4 81.3 (5.9%)	15.4 10.9 (-29.2%)	31.2 29.5 (-5.4%)	15.4 13.0 (-15.6%)
LLaVA-1.5 7B LLaVA-DyVTE 7B	58.6 58.6 (0.0%)	9.2 5.0 (45.7%)	1510.7 1491.4 (-1.3%)	8.9 4.3 (-51.7%)	64.3 64.7 (+0.6%)	9.6 5.4 (43.8%)	85.9 81.6 (-5.0%)	8.8 4.1 (-53.4%)	30.5 31.9 (+4.6%)	8.7 6.3 (-27.6%)
LLaVA-1.5 13B LLaVA-DyVTE 13B	61.6 59.3 (-3.7%)	17.6 7.1 (-59.7%)	1531.3 1546.4 (+1.0%)	7.2 (-57.4%)	67.7	18.3 7.8 (-57.4%)	85.9 84.8 (-1.3%)	16.8 7.6 (-54.8%)	36.1	16.7

Tab 1. Results of MLLMs with and without DvVTE on five MLLM benchmarks

Method	GQA		VQA		TextVQA		SQ	A-I	Average		
Method	Accuracy 1	TFLOPs .	Score †	TFLOPs 1	Accuracy †	TFLOPs 1	Accuracy †	TFLOPs 1	Accuracy †	TFLOPs 1	
EAGLE-X5 7B EAGLE-DyVTE 7B	64.9 62.4 (-3.9%)	27.8 21.7 (-21.9%)	83.4 82.6 (-1.0%)	27.8 21.6 (-22.3%)	71.2	29.5 24.5 (-16.8%)	69.8 71.7 (+2.7%)	29.2 23.5 (-24.3%)	72.3 71.7 (-0.8%)	28.6 22.8 (-20.3%)	
VILA 7B VILA-DyVTE 7B	63.1	8.8 5.5 (-37.5%)	80.3 79.2 (-1.4%)	8.8 5.4 (-38.6%)	62.6	9.5	69.5 69.5 (0.0%)	9.8 6.1 (-37.8%)	68.8 67.9 (-1.3%)	9.2 6.0 (-34.8%)	
InternVL 7B InternVL-DyVTE 7B	62.9	15.4 11.8 (-23.4%)	79.3 77.6 (-2.1%)	15.4 11.7 (-24.0%)	57.0 55.8 (-2.1%)	16.1 13.5 (-16.1%)	66.2 66.2 (0.0%)	16.4 12.1 (-26.2%)	66.4 65.2 (-1.8%)	15.8 12.3 (-22.2%)	
LLaVA-1.5 7B LLaVA-DyVTE 7B	62.0	8.8 5.3 (-39.8%)	78.5 76.6 (-2.4%)	8.8 5.1 (-42.0%)	58.2 56.6 (-2.7%)	9.5 6.7 (-29.5%)	69.4 69.6 (+0.3%)	9.8 5.5 (43.9%)	67.0 65.7 (-1.9%)	9.2 5.6 (-39.1%)	
LLaVA-1.5 13B LLaVA-DyVTE 13B	63.3	16.8 9.0 (-46.4%)	80.0 78.8 (-1.5%)	16.8 8.9 (-47.0%)	61.3 58.9 (3.9%)	18.1	72.9 72.3 (-0.8%)	18.6 8.2 (-55.9%)	69.4 68.1 (-1.9%)	17.6 9.2 (47.7%)	

Tab 2 Paguite of MLI Me with and without DW/TE on four VI, benchmarke

State			GOA		TextVOA		MM-Vet		SOA-I		Average		
Mean Visual	Last Visual	Mean Text	Last Text	Acc. †	Exit Layer	Acc. †	Exit Layer	Acc. ↑	Exit Layer	Acc. ↑	Exit Layer	Acc. †	Exit Layer
1				61.4	21.6	57.3	21.0	31.5	21.4	69.7	21.7	55.0	21.4
	1			61.2	21.3	57.1	21.1	30.0	21.0	69.7	21.4	54.5	21.2
		1		60.1	17.4	57.6	22.1	31.1	22.1	69.7	20.4	54.6	20.5
			1	59.8	16.3	56.3	19.1	29.9	21.0	69.8	13.8	54.0	17.6
V	1			61.1	21.2	57.3	21.3	31.6	21.3	69.7	21.0	54.9	21.2
1		1		58.7	16.5	57.6	22.2	32.7	22.5	69.7	21.3	54.7	20.6
1			1	59.4	16.3	56.5	19.9	30.9	21.8	69.7	14.4	54.1	18.1
	1	1		59.4	16.7	57.4	21.8	31.3	22.0	69.6	20.3	54.4	18.1 20.2
	1		1	59.3	16.4	56.5	19.9	31.2	21.6	69.6	14.4	54.1	18.1 17.6
		1	1	60.0	16.4	56.6	19.7	31.9	21.1	69.6	13.4	54.5	17.6

Tab 4. Ablation study of different token statuses for DvVTE.

	Text-Image Cross Attention	Text Self Attention	Text-Image Cross Attention Text Self Attention
210	wio DyVTE 10	→ w/o DyVTE → w DyVTE	10 w byVTE ≥ 10 w byVTE
fdonus 0	English Company	Fig. Mary	The state of the s
U1	1 4 8 12 16 20 24 28 32 (a) SQA-	1 4 8 12 16 20 24 28 32	1 4 8 12 16 20 24 28 32 1 4 8 12 16 20 24 28 (b) TextVQA
ab 3.	Comparison of real inference		Fig 6. Examples on LLaVA-1.5 with DvVTE

| Description |

DyVTE | 0.161s (-32.1%) 72.3 (-0.8%) 0.163s (-30.9%) 66.0 (-2.5%) DyVTE+FastV | 0.154s (-34.9%) 73.0 (+0.2%) 0.155s (-34.4%) 68.5 (+1.2%) in a package of arapherises.

13.13 shames
(b) Queedinar What nandows are on the serve signe?

LaAAA The stores
(spin her of the entire signe?

LaAAA The stores
(spin her of the entire signe)?

Part (Chers) (spin her of the entire signe) are of the entire signe her of the entire signe her of the entire signe show the entire signe her of the off of the store signe her of the off of the store signe her of the entire signe her of the ent

Tab 5. Comparison between DyVTE and token pruning methods

Method	SQ	A-I	MM-Vet		SE	ED	M	4B	Average		
	Accuracy 1	TFLOPs \	Score †	TFLOPs 1	Accuracy †	TFLOPs	Accuracy †	TFLOPs \	Accuracy 1	TFLOPs \	
LLaVA 7B	69.4	9.8	30.5	8.7	58.6	9.2	64.3	9.6	55.7	9.3	
ToMe [5] FastV [7]									55.4 (-0.5%)		
DyVTE DyVTE+FastV									56.2 (+0.9%) 55.3 (-0.7%)		

MLLM	100 700 000	GQA		VQAv2		SEED		MMB		MME	
	Trained	Acc. ↑	Exit Layer	Acc. ↑	Exit Layer	Acc. ↑	Exit Layer 1	Acc. ↑	Exit Layer ↓	Acc. ↑	Exit Layer
VILA 7B	127	63.1	-	80.3	-	61.7	-	69.9	- 1	1489.2	-
	VILA 7B	61.9	17.4	79.2	16.7	61.8	17.6	69.8	16.2	1503.1	13.1
	LLaVA 7B	61.3	17.1	79.1	17.1	61.8	15.8	69.8	16.5	1504.9	14.6
		62.9		79.3		59.2		64.6		1525.1	161
InternVL 7B	InternVL 7B	61.3	16.1	77.6	15.8	59.1	13.9	64.4	13.6	1474.1	12.1
	LLaVA 7B	61.3	17.0	77.7	16.8	59.2	18.1	64.9	17.8	1516.9	14.1

Tab 6. Comparison between DyVTE and token pruning methods.