

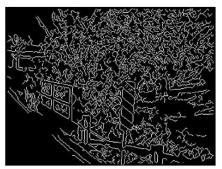
Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning

Dongkwan Lee*

Junhoo Lee*

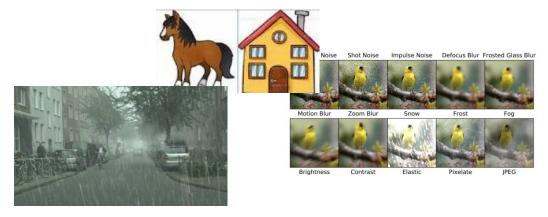
Nojun Kwak

Seoul National University
*Equal Contribution


Introduction

• Back then, edge detection was robust

Edge Detection



That was just a warm-up

Modern Deep Learning

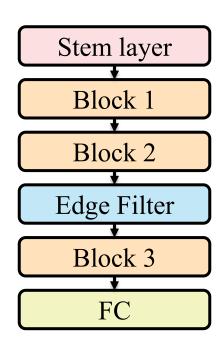
Weather, domain shift, noise, blur, brightness...

Introduction

• Classical Edge Detection shows robustness by removing non-semantic details and highlighting semantic structure.

• What if we apply edge-filtering logic to Deep Learning features to enhance stability?

Deep Edge Filter


Key hypothesis

As in image edge detection, we hypothesize that the high-frequency components of deep features will carry meaningful information.

• Implementation

High-Pass Filter(HPF) directly applied to deep feature by subtracting LPF value

$$F_{edge}(h) = h - LPF(h)$$

Observation

• When applying a frequency filter to the backbone output in CIFAR100 Linear Probing, the LPF reduced performance, whereas applying an Edge Filter (HPF) improved performance.

	w/o Filter	LPF	Edge Filter
Train acc	21.8	17.4	22.4
Val acc	21.0	17.4	21.4

Experiment Goal

• We aim to demonstrate that the phenomenon where edge filters remove superficial information while preserving semantic information, thereby increasing a model's generalizability, holds generally across deep learning in architecture-agnostic and modality-agnostic manner.

• To this end, we select and perform tasks where generalization is crucial across various modalities.

Vision modality

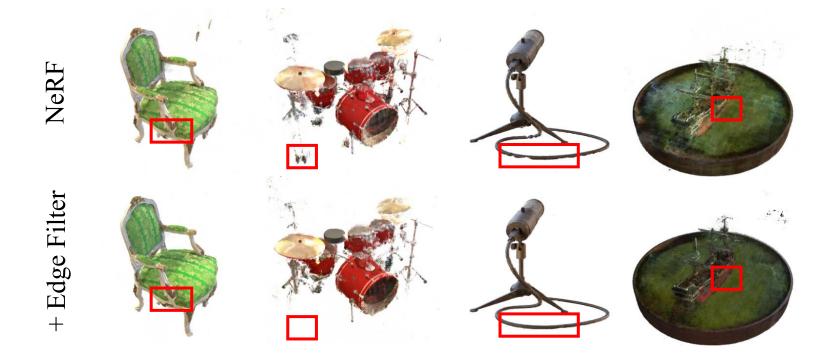
• task : Test-Time Adaptation

	CIFAR-10C			CIFAR-100C			ImageNet200-C					
Method	Source	Direct	NORM	TENT	Source	Direct	NORM	TENT	Source	Direct	NORM	TENT
WRN28-10	91.9	49.6	73.8	74.6	69.8	26.2	46.6	48.0	58.8	2.0	23.9	21.6
$+F_{edge}$	90.8	57.7 (+8.0)	75.3 (+1.5)	75.8 (+1.2)	65.4	36.4 (+1 0.2)	49.7 (+3.1)	50.5 (+2.5)	55.5	2.1 (+ 0.1)	25.8 (+1.9)	23.2 (+1.6)
ViT-B/32	95.6	60.8	-	60.9	82.3	41.3	-	41.0	83.4	27.5	-	30.7
$+F_{edge}$	95.3	68.1 (+ 7.3)	-	69.4 (+ 8.5)	81.8	41.7 (+ 0.4)	-	42.0 (+1.0)	93.1	29.4 (+1.9)	-	32.6 (+1.9)

Language modality

• task : Sentiment Analysis (GLUE benchmark)

	SST-2(Sentiment)	QQP(Paraphrase)	QNLI(Inference)
Transformer	79.36	83.42	62.40
$+F_{edge}$	80.85 (+1.49)	83.46 (+0.04)	63.30 (+0.90)



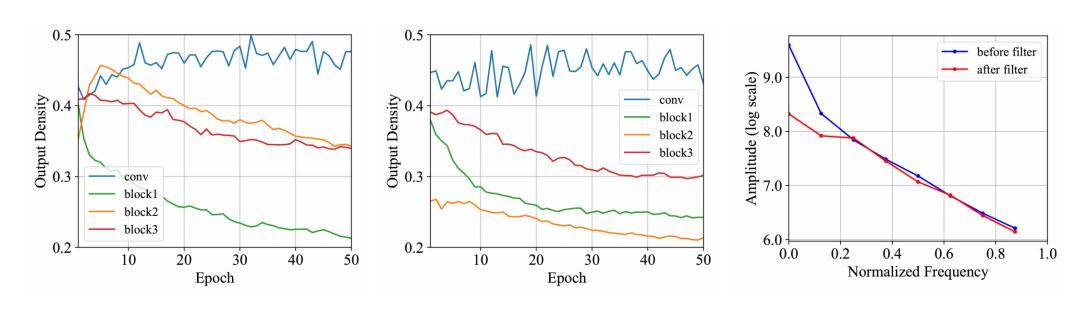
3D modality

• task : Fewshot NeRF (8-view, Blender dataset)

• PSNR: $22.95 \rightarrow 23.39 (+0.44)$

Audio modality

• task : Sound classification (UrbanSound8k)


• Accuracy: $77.42\% \rightarrow 81.72\% (+4.3\% p)$

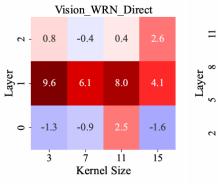
Analysis

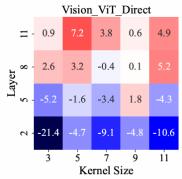
Analysis on block output density and FFT result

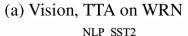
(a) Without Filter

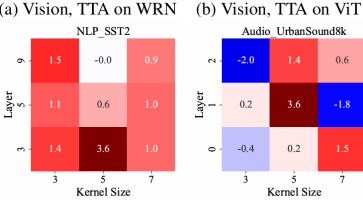
(b) Edge Filter after block1

(c) Deep Feature FFT


Ablation studies




Modality	Vis	Language		
Benchmark	CIFAR-10	SST-2		
Backbone	WRN	ViT	BERT	
Baseline +Mean $\mathcal{F}_{\text{edge}}$ +Median $\mathcal{F}_{\text{edge}}$ +Gaussian $\mathcal{F}_{\text{edge}}$	49.64 57.65 (+ 8.01) 59.69 (+ 10.05) 57.66 (+ 8.02)	60.84 68.09 (+7.25) 67.28 (+6.44) 56.37 (-4.47)	79.36 80.85 (+1.49) 81.60 (+2.24) 80.58 (+1.12)	
+Mean LPF	39.69 (-9.95)	47.96 (-26.68)	57.56 (-3.28)	



by Filter Position and Kernel Size

(c) Language, SST2

(d) Audio, UrbanSound8k

Conclusion

- We brought the concept of "Edge Filtering" to deep neural networks, creating a modality-agnostic and architecture-agnostic approach.
- We reveal that deep learning models store semantic information in "High Frequency Components" of deep features.
- Therefore, the Edge Filter serves as a simple yet effective human-crafted layer that significantly improves the robustness of deep learning models

