Safely Learning Controlled Stochastic Dynamics

Luc Brogat-Motte¹²

Joint work with

Alessandro Rudi³, Riccardo Bonalli¹

¹ Laboratoire des Signaux et Systèmes, CNRS, CentraleSupélec, Université Paris-Saclay, France

² Istituto Italiano di Tecnologia, Italy

³ SDA Bocconi, Bocconi University, Italy

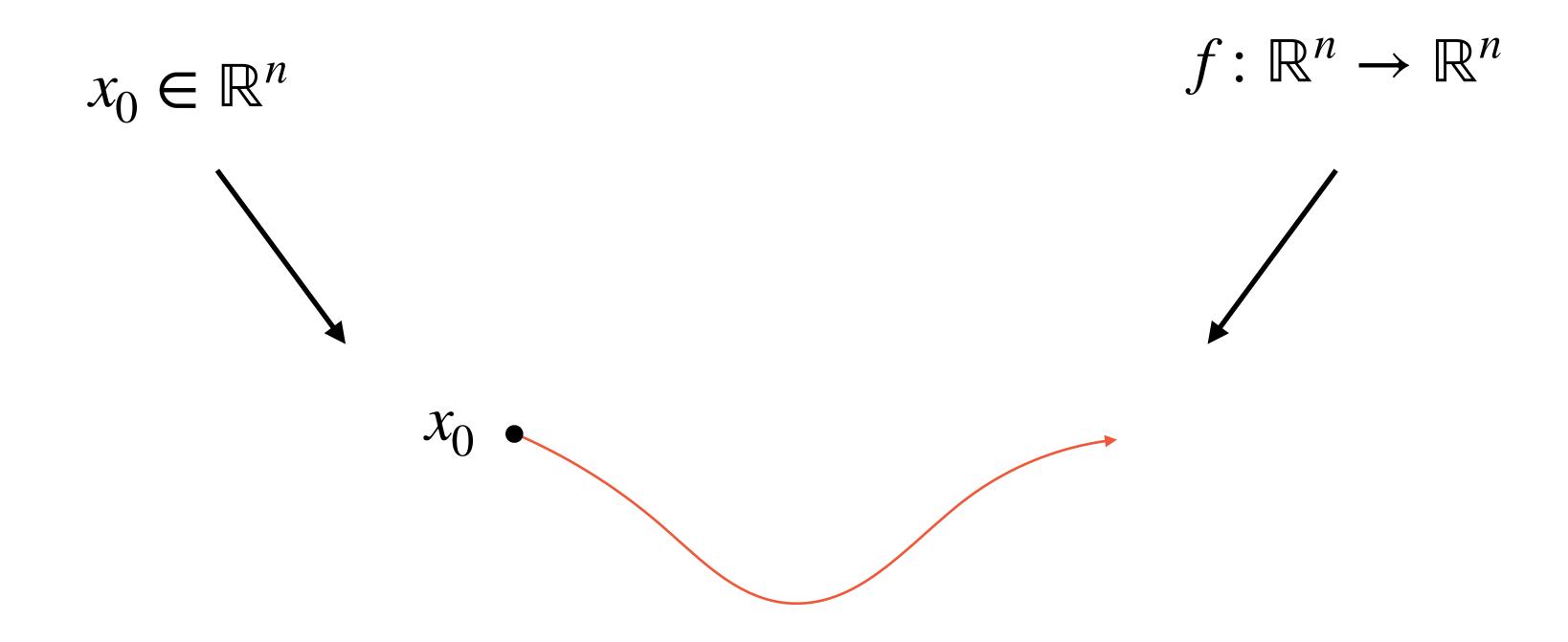
Controlled Dynamical Systems

Continuous-time Dynamics

 $x_t \in \mathbb{R}^n$: system's state at time t

 $dx_t = f(x_t) dt$: system's drift

Continuous-time Dynamics

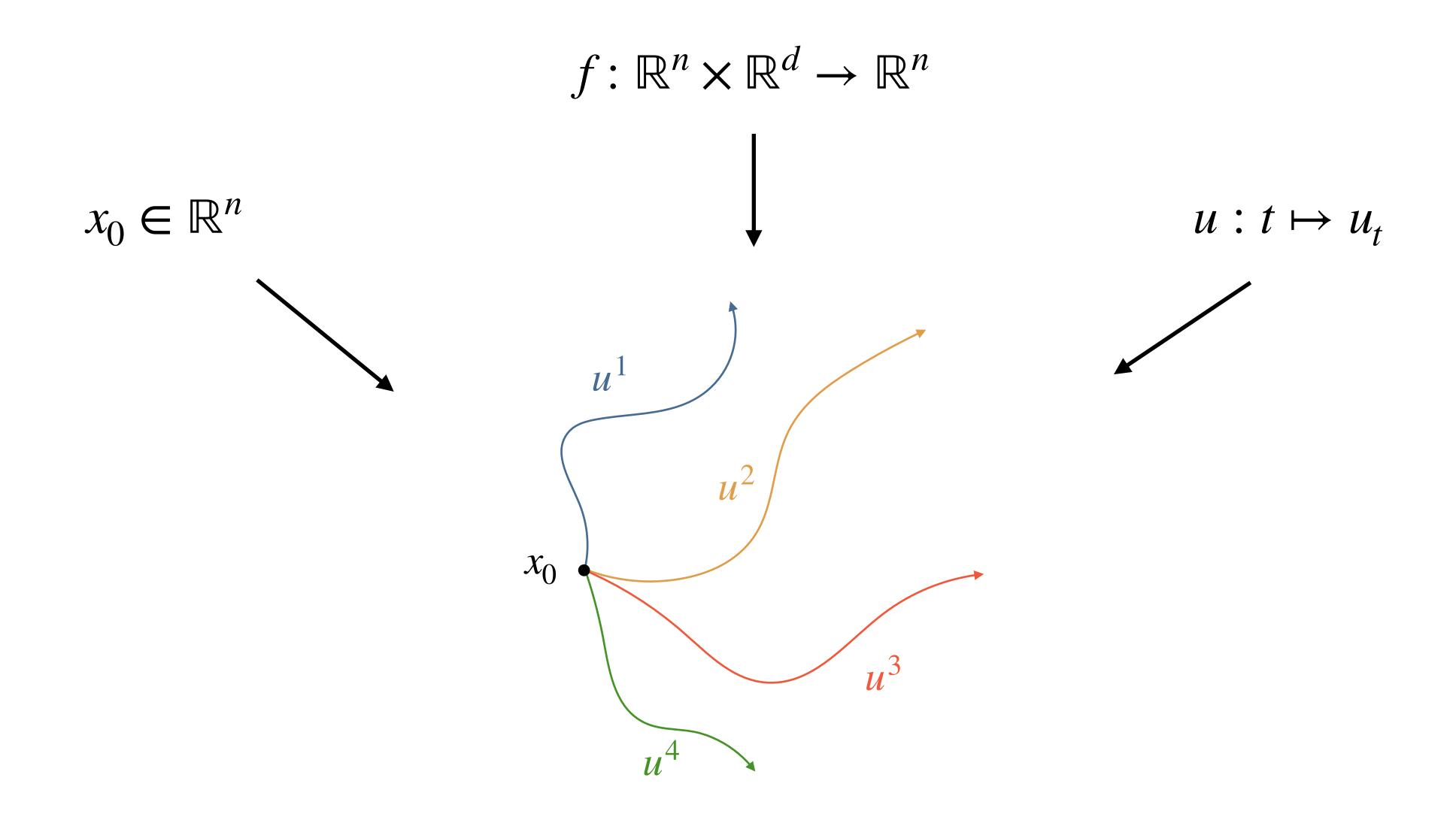


Controlled Dynamics

 $u_t \in \mathbb{R}^d$: control input at time t

$$dx_t = f(x_t, u_t) dt$$

Controlled Dynamics

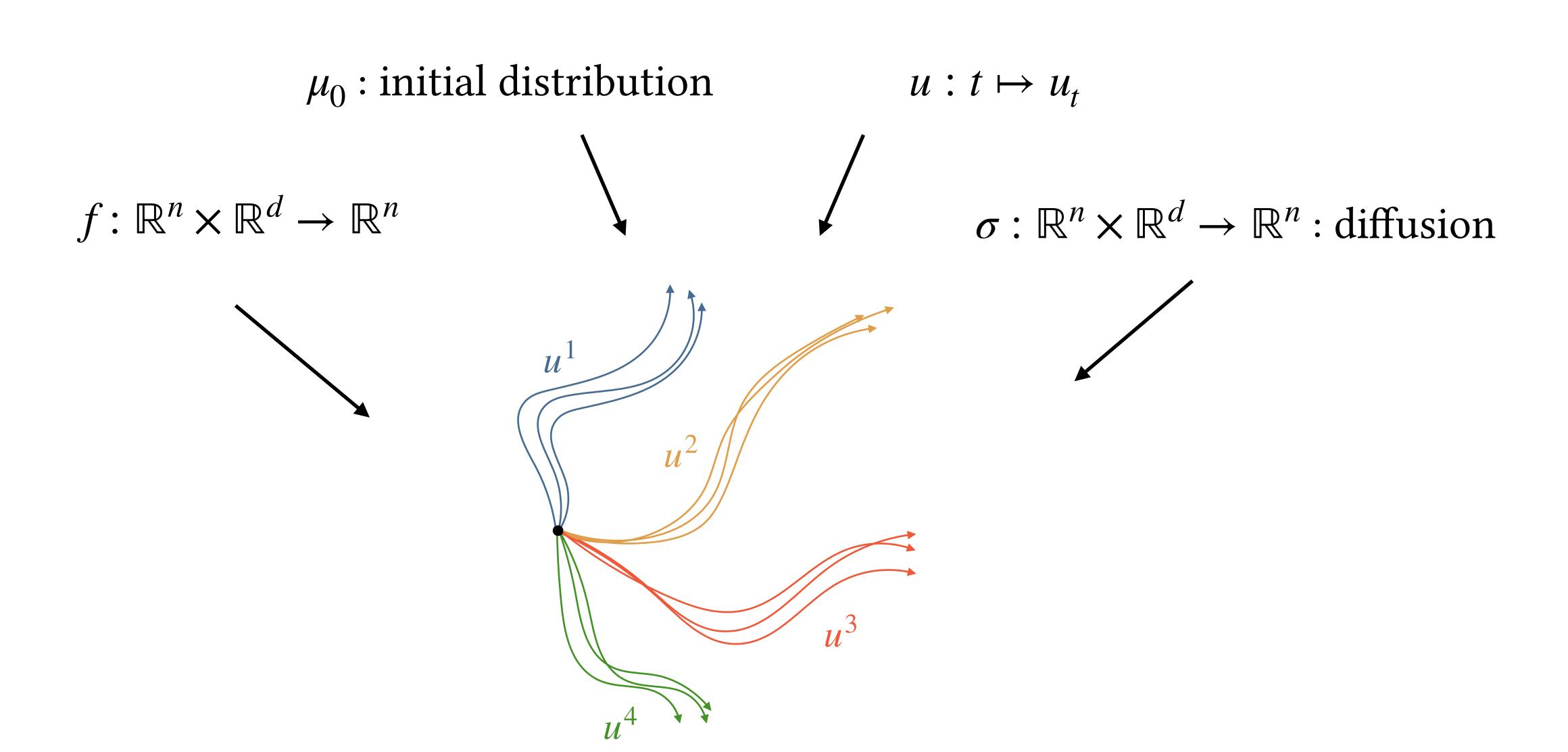


Controlled Stochastic Dynamics

 W_t : Brownian motion

$$dX_t = f(X_t, u_t) dt + \sigma(X_t, u_t) dW_t$$

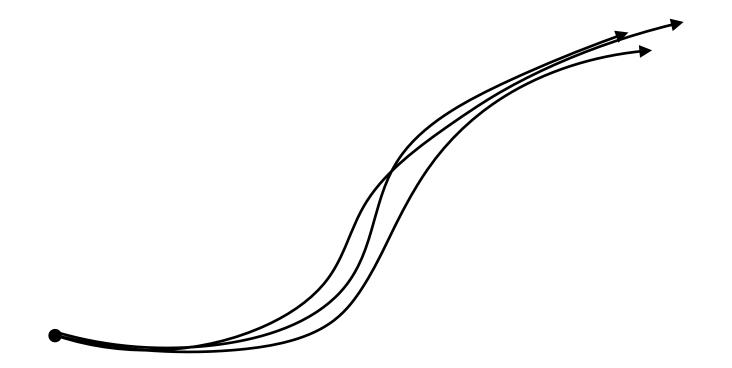
Controlled Stochastic Dynamics



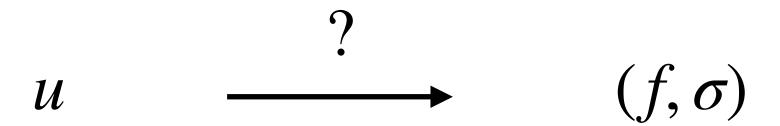
When the model is known

 (f,σ) \longrightarrow u

Knowing (f, σ) allows to design controls for desired trajectories



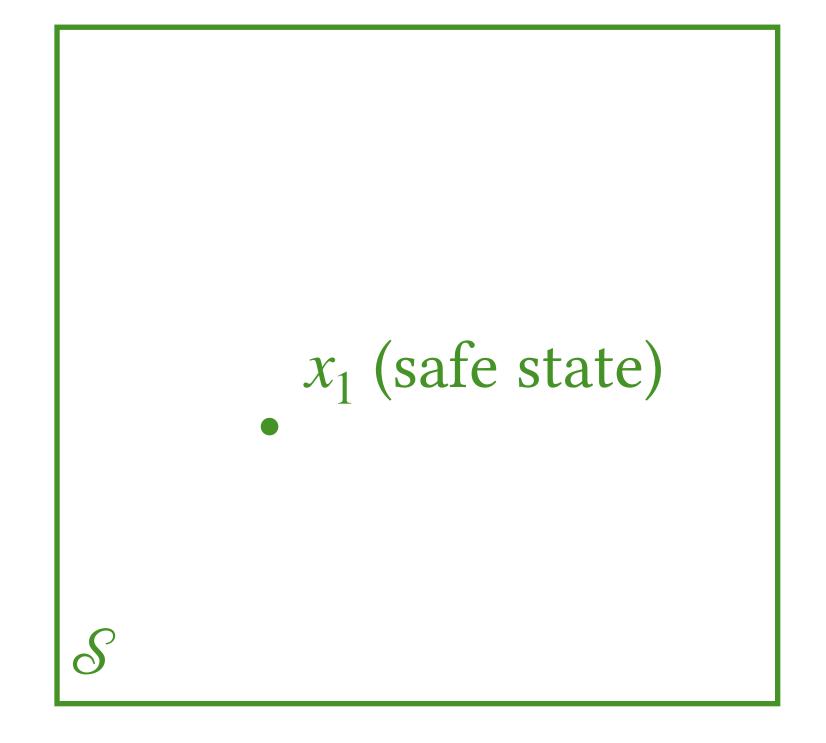
Often the model is unknown



Learning (f, σ) requires collecting trajectories under various controls u^1, u^2, \dots

Safe and unsafe states

In real systems, some states may lead to failure or damage.



 x_2 (unsafe state)

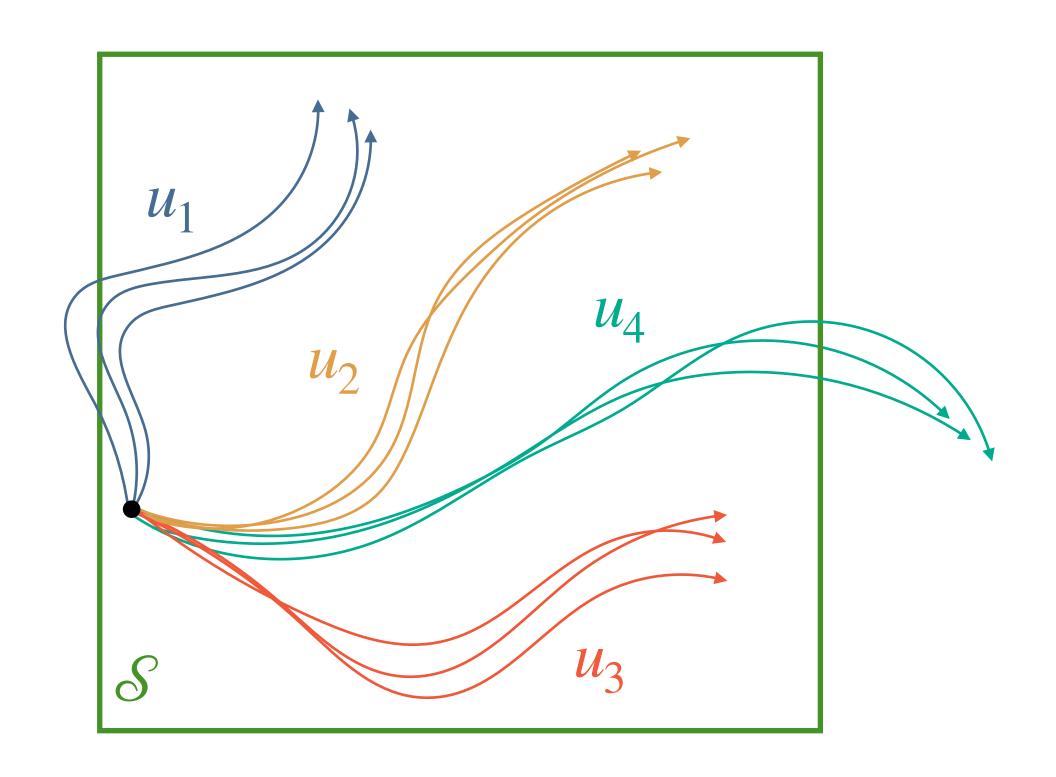
Control Parametrization

$$u^{\theta}: [0,T] \times \mathbb{R}^n \to \mathbb{R}^d$$

$$\theta \in D \subset \mathbb{R}^m$$

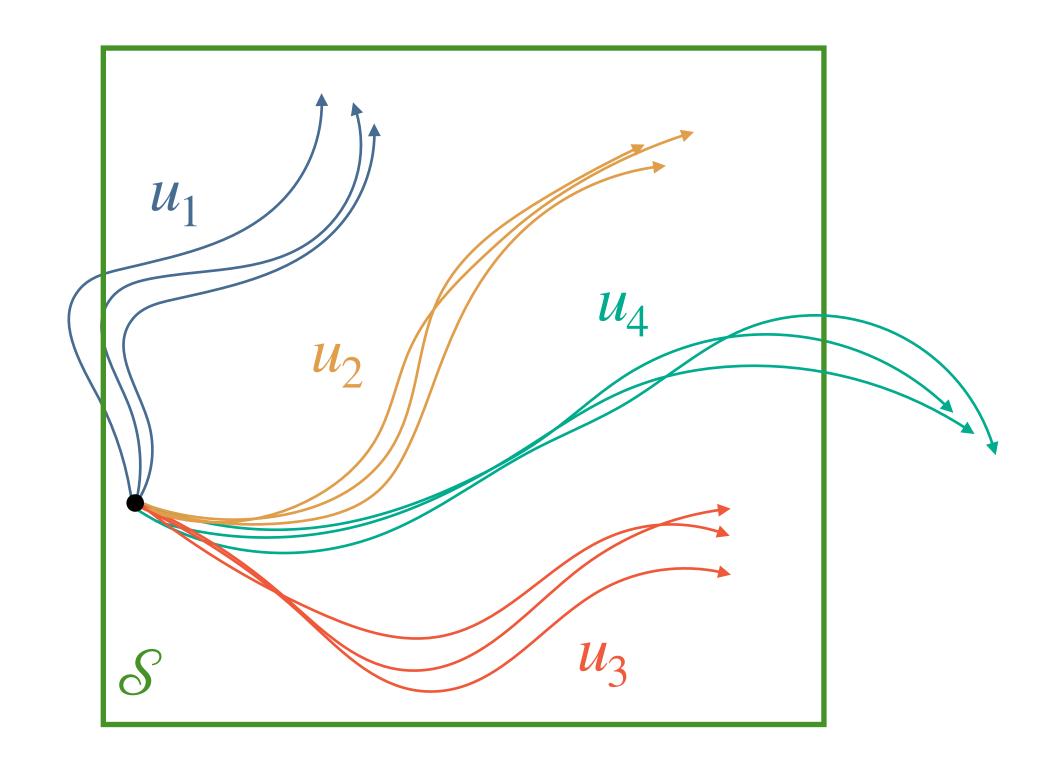
Safe controls and horizons

$$\inf_{t \in [0,T]} \mathbb{P}(X_t^{\theta} \in \mathcal{S}) \ge 1 - \varepsilon \longrightarrow \text{control } \theta \text{ is safe up to horizon } T$$

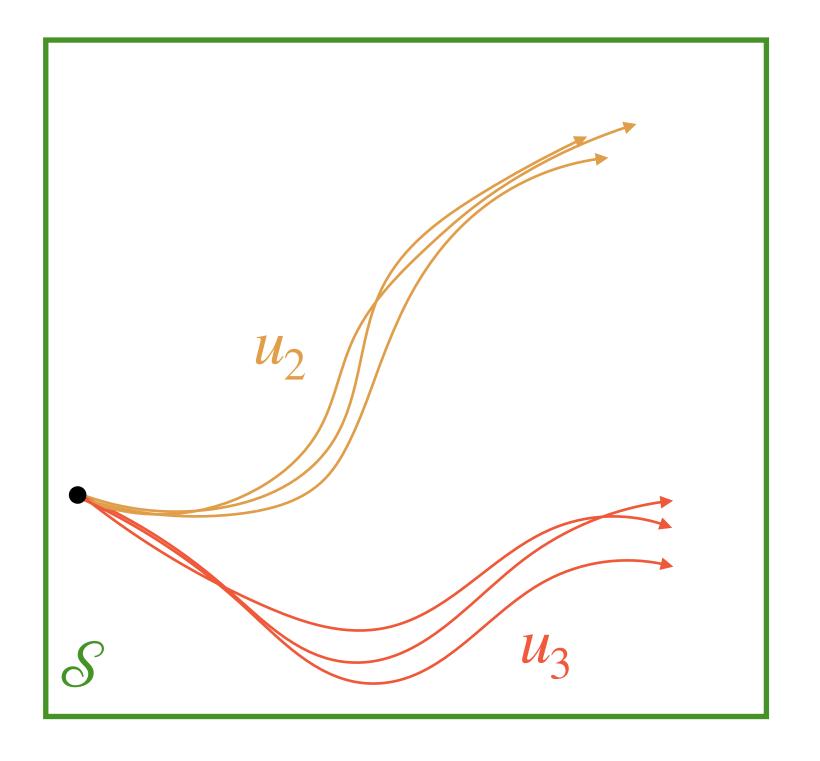


Safe Data Collection

Safe data collection = only safe control executed



Unsafe collection



Safe collection

Learning Problem

Learning the system's density map

$$\theta, t, x \mapsto p_{\theta}(t, x) = \text{density of } X_t^{u_{\theta}}$$

while ensuring safe data collection.

Challenge

Learning $\theta, t, x \mapsto p_{\theta}(t, x)$ requires data collection, and safe data collection depends on $\theta, t, x \mapsto p_{\theta}(t, x)$

Proposed Method

Start from a single a-priori known safe control

Iterative method.

- 1. Safe data collection thanks to safe control
- 2. Model update thanks to collected data
- 3. Sample a new safe control thanks to updated system model

1. Safe Data Collection

Execute a safe controls u_{θ} and collect $Q \in \mathbb{N}^*$ trajectories

$$(X^{u_{\theta}}(w_i, t_{\ell}))_{i,l}$$

sampled at times $t_1, ..., t_M$, with $M \in \mathbb{N}^*$.

2. Model Update

- 1. Dynamics model: $\theta, t, x \mapsto \hat{p}(\theta, t, x)$
- 2. Predictive uncertainty at (θ, t) : $\hat{\sigma}(\theta, t)$

2. Model Update

1. Safety probability at
$$t$$
 under θ : $\hat{s}(\theta, t) = \int_{\mathcal{S}} \hat{p}_{\theta}(t, x) dx$

2. Set $\hat{\Gamma}$ of certified safe control:

$$(\theta, T) \in \hat{\Gamma} \iff LCB(\hat{s}(\theta, [0, T])) \ge 1 - \varepsilon$$

3. Sample New Safe Control

Select the most uncertain point inside the certified safe region $\hat{\Gamma}$

$$(\theta_{\text{new}}, t_{\text{new}}) = \arg \max_{(\theta, T) \in \hat{\Gamma}, t \le T} \hat{\sigma}(\theta, t).$$

Assumptions

1. Single a-priori known safe control

$$\mathbb{P}(X_t^{\theta} \in \mathcal{S}) \geq 1 - \varepsilon.$$

2. Sobolev-regular dynamics

$$p \in H^{\nu}(\mathbb{R}^{n+m+1}), \nu > \max(n, m+1)/2,$$

uniform in x and (θ, t) .

Certified high-probability safety

At all iterations, the maintained set $\hat{\Gamma}$ contains only safe controls, therefore:

- 1. Safety holds during training
- 2. $\hat{\Gamma}$ can be used as a certified of safe controls during deployment

Estimation and sample complexity

For all $(\theta, T) \in \hat{\Gamma}$, $t \leq T$,

$$\|\hat{p}_{\theta}(t,\cdot)-p_{\theta}(t,\cdot)\|_{L^{\infty}}\leq c\eta,$$

with accuracy η achieved (up to log factors) using

$$Q \gtrsim N^{\frac{2\nu+n}{2\nu-n}}, \qquad N = \mathcal{O}(\eta^{-\frac{2}{1-\alpha}}), \quad \alpha > \frac{m+1}{m+1+2\nu}.$$

Smoother dynamics (larger ν) yield faster convergence and lower sample complexity.

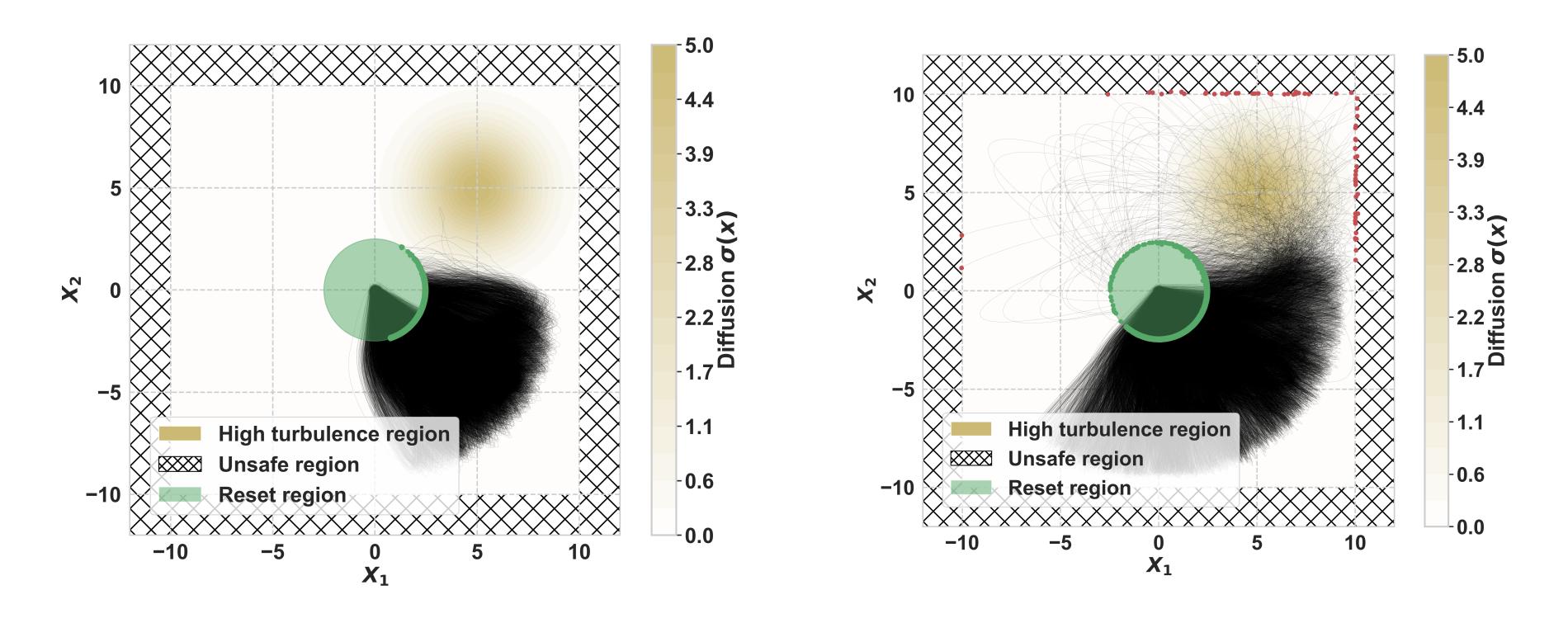
$$dX_t = V_t dt, \qquad dV_t = u(t, X_t, V_t) dt + a(X_t) dW_t,$$

with

- diffusion $a(X) = Ae^{-\|X X_c\|^2/2\sigma^2}$,
- safe region $(-10,10)^2$

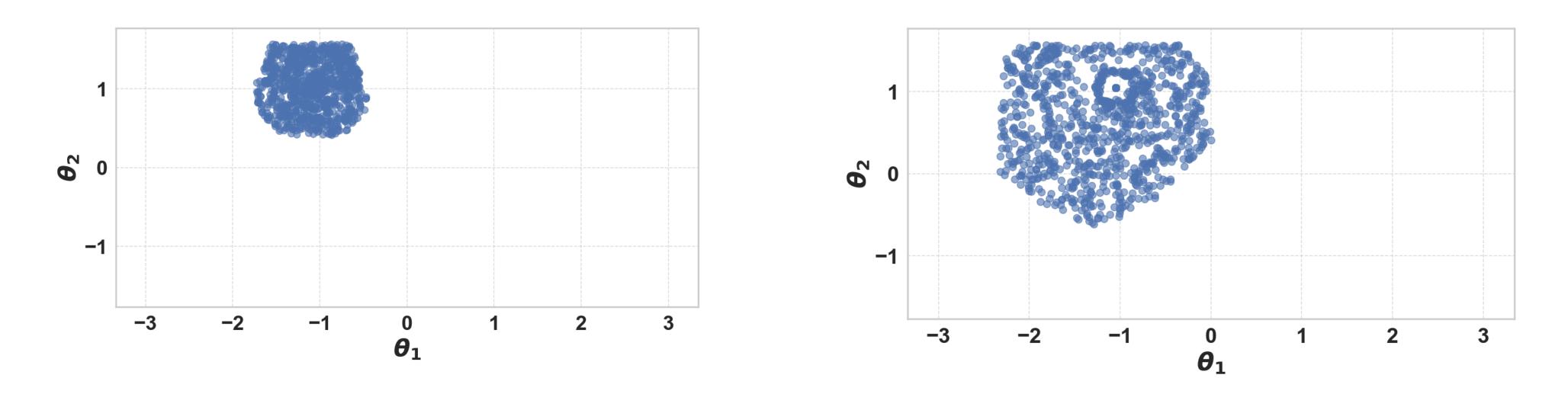
Control parameterized by two acceleration angles (θ_1, θ_2) with fixed magnitude, followed by a feedback phase steering to the initial region.

We run 1000 iterations, starting from a single known safe control, under safety thresholds $\varepsilon \in \{0.1,0.3\}$



Sample trajectories

We run 1000 iterations, starting from a single known safe control, under safety thresholds $\varepsilon \in \{0.1,0.3\}$



Control coverage

Key takeaways

Safe learning method for controlled stochastic system dynamics

- Certified safety under Sobolev regularity
- Open-source implementation
 - https://github.com/lmotte/dynamics-safe-learn
- Empirical validation:
 - safe exploration
 - accurate dynamics estimation
 - efficient computation