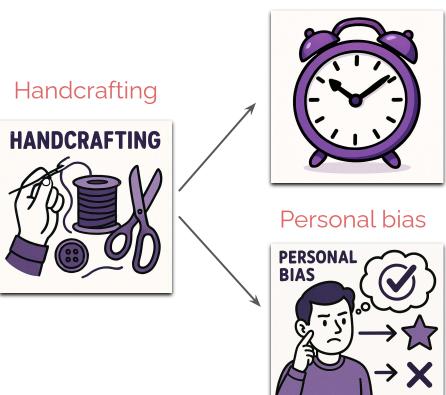


Generating Computational Cognitive Models using Large Language Models


Milena Rmus*, **Akshay Jagadish***, Marvin Mathony,

Tobias Ludwig, & Eric Schulz

NeurlPS-2025 (main track)

Precise but expensive

Time

Large Language Models can help address this!

Introducing the pipeline for

Generating Computational Cognitive Models (GeCCo)

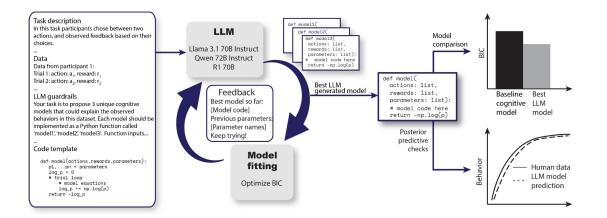
Task description

In this task participants chose between two actions, and observed feedback based on their choices.

Data

Data from participant 1: Trial 1: action: a₁, reward: r₁ Trial 2: action: a₂, reward: r₂

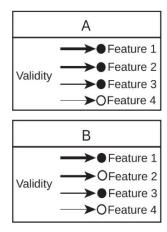
LLM guardrails


Your task is to propose 3 unique cognitive models that could explain the observed behaviors in this dataset. Each model should be implemented as a Python function called 'model1,' model2,' model3.' Function inputs...

Code template

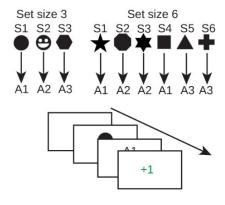
Results

GeCCo


Base LLMs

- 1. Llama-3 70B
- 2. Qwen-2.5 72B
- 3. R1 70B

Cognitive domains


- 1. Decision making
- 2. Learning
- 3. Planning
- 4. Working memory

Results: Decision making

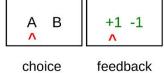
Hilbig & Moshagen (2014)

Results: Working memory

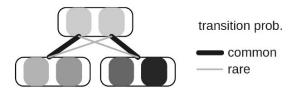
Control experiments

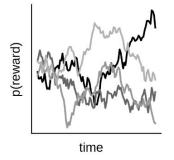
Conclusion

- A scalable pipeline using LLMs for generating computational cognitive models, called GeCCo.
- GeCCo successfully generates interpretable models across multiple domains:
 - 1. Decision-making
 - 2. Reinforcement Learning
 - 3. (Model-based) Planning
 - 4. Working Memory
- LLMs have the potential to democratize complex scientific discovery and accelerate pace of scientific research in cognitive science.


Acknowledgments

HCAI


Results: Learning


Chambon et al. 2020 full feedback (exp. 2)

Chambon et al. (2020)

Results: Planning

drifting reward probabilities for 2nd-stage states to encourage exploration