

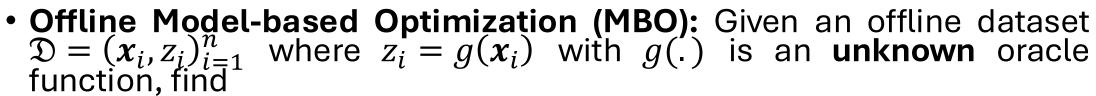
ROOT: Rethinking Offline Optimization as Distributional Translation via Probabilistic Bridge

Manh Cuong Dao*1, The Hung Tran*4, Phi Le Nguyen², Thao Nguyen Truong³, Trong Nghia Hoang⁴

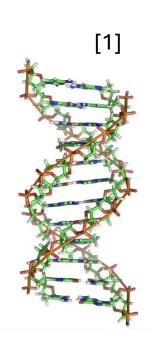
*These authors contributed equally.

Problem Definition

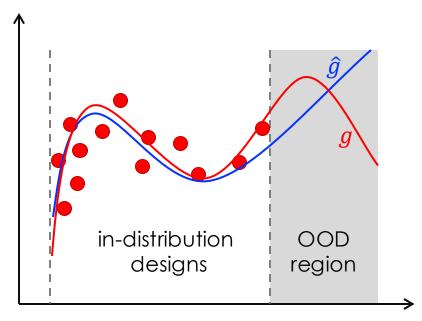
- ullet Find a design $oldsymbol{x}$ that maximizes certain desirable properties.
 - For instance:
 - Find a DNA sequence with maximum binding affinity.
- However, evaluation g(x) is prohibitively expensive.
 - For instance:
 - Expensive laboratory experiment to measure binding affinity.



$$\mathbf{x}_* = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} g(\mathbf{x})$$



Motivation

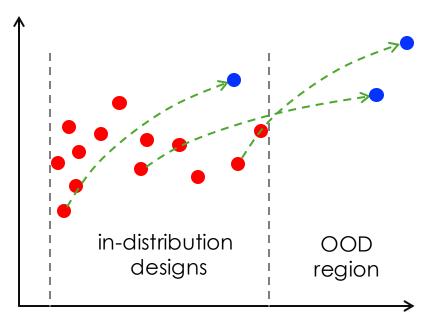


Surrogate model-based approaches

- Learn a surrogate model \hat{g}
- Approximate optimal design

$$x_* = \operatorname{argm} ax \hat{g}$$

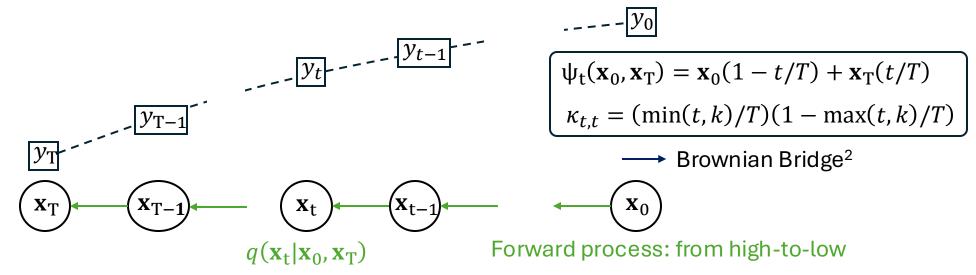
Challenge: \hat{g} is **unreliable** in OOD regime



Our approach: ROOT

- Frame MBO as a distribution translation task from low-value to high-value regime
- To enable this translation, we introduce a new concept of **probabilistic bridge.**

Probabilistic Bridge Construction



Given \mathbf{x}_0 and \mathbf{x}_T , a **probabilistic bridge** is defined as observations $[\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{T-1}]$ of a random function distributed by Gaussian Process $\mathbf{GP}\big(\psi_t(\mathbf{x}_0, \mathbf{x}_T), \kappa_{t,k}\mathbf{I}\big)$ where $\psi_0(\mathbf{x}_0, \mathbf{x}_T) = \mathbf{x}_0$, and $\psi_T(\mathbf{x}_0, \mathbf{x}_T) = \mathbf{x}_T$ \rightarrow This implies a marginal Gaussian:

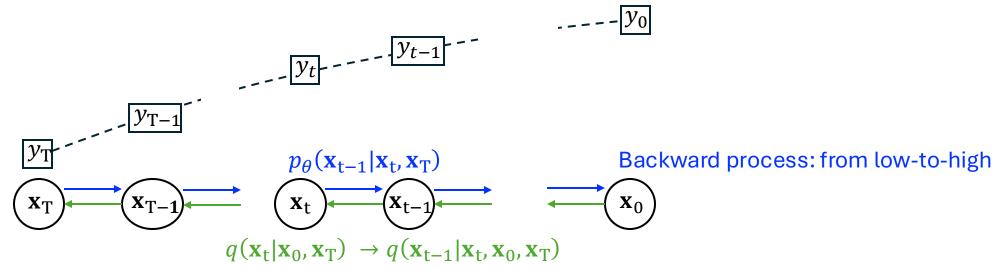
$$q(\mathbf{x}_{t}|\mathbf{x}_{0},\mathbf{x}_{T}) = \mathbb{N}(\mathbf{x}_{t};\psi_{t}(\mathbf{x}_{0},\mathbf{x}_{T}),\kappa_{t,t}\mathbf{I})$$

and reveals the backward transition:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0,\mathbf{x}_T) = \mathbb{N}(\mathbf{x}_{t-1};\mu(\mathbf{x}_t,\mathbf{x}_0,\mathbf{x}_T),\tilde{\kappa}_{t-1}\textbf{\textit{I}})$$
 with $\mu(\mathbf{x}_t,\mathbf{x}_0,\mathbf{x}_T) = \psi_{t-1}(\mathbf{x}_0,\mathbf{x}_T) + \kappa_{t-1,t}\kappa_{t,t}^{-1}\big(\mathbf{x}_t - \psi_t(\mathbf{x}_0,\mathbf{x}_T)\big)$ and $\tilde{\kappa}_{t-1} = \kappa_{t-1,t-1} - \kappa_{t-1,t}\kappa_{t,t}^{-1}\kappa_{t,t-1}$

[2] Li, Bo, et al. "Bbdm: Image-to-image translation with brownian bridge diffusion models." *Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition*. 2023.

Learning Probabilistic Bridge Model



To learn the target-agnostic transformation, we parameterize:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{T}) = \mathbb{N}(\mathbf{x}_{t-1};\mu_{\theta}(\mathbf{x}_{t},\mathbf{x}_{T},t),\tilde{\kappa}_{t-1}\mathbf{I})$$

Then
$$\theta$$
 is learnt via: $\theta_{PB} = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{(x_0, x_T, t)} \left[D_{KL} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0, \mathbf{x}_T) | | p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_T) \right) \right]$ (1)

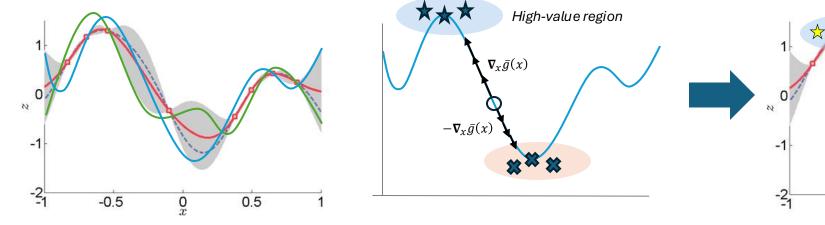
Given θ_{PR} and low-value design \mathbf{x}_{T} , we can simulate high-value \mathbf{x}_{0} :

$$\mathbf{x}_{t-1} = \mu_{\theta_{PB}}(\mathbf{x}_t, \mathbf{x}_T, t) + \sqrt{\tilde{\kappa}_t} \boldsymbol{\epsilon}$$

where $\epsilon \sim \mathbb{N}(0, \mathbf{I})$ when t > 1 and $\epsilon = 0$ otherwise.

Challenge: The loss function (1) requires pairs of data (x_0, x_T)

Synthetic data generation



Step 1: Fit multiple GPs

Step 2: Take GA, GD on each GP

Final synthetic dataset

-0.5

Probabilistic bridge

0.5

Step 1: Multiple GP posterior mean functions are used as synthetic functions:

$$\bar{g}_{\phi_s}(x) = k(\phi_s)^T (K(\phi_s) + \sigma^2 I)^{-1} y$$
 where kernel k is parameterized by ϕ_s

Step 2: Find high- and low- value samples of \bar{g}_{ϕ_s} via taking M gradient ascent and descent steps:

$$X_{s}^{+} = \left\{ x_{M}^{+} = x_{0}^{+} + \eta \sum_{m=0}^{M} \nabla_{x} \bar{g}_{\phi_{s}}(x_{m}^{+}) \Big|_{x_{0}^{+} \in D} \right\}$$

$$X_{s}^{-} = \left\{ x_{M}^{-} = x_{0}^{-} - \eta \sum_{m=0}^{M} \nabla_{x} \bar{g}_{\phi_{s}}(x_{m}^{-}) \Big|_{x_{0}^{-} \in D} \right\}$$
set D_{s} :

Eventually, a synthetic dataset D_s :

$$D_S = \{(X_S^-, y_S^-); (X_S^+, y_S^+)\}_{i=1}^{n_g} \text{ where } y_S^- = \bar{g}_{\phi_S}(X_S^-), y_S^+ = \bar{g}_{\phi_S}(X_S^+)$$

Experiment settings

• **Benchmark Tasks.** 4 real-world tasks from the Design-Bench³ and 3 RNA-Binding tasks from ViennaRNA⁴.

Dataset	Size	Dimensions	Categories	Туре
Ant Morphology	25009	60	N/A	Continuous
D'Kitty Morphology	25009	56	N/A	Continuous
TF Bind 8	32898	8	4	Discrete
TF Bind 10	50000	10	4	Discrete
RNA-Binding	5000	14	4	Discrete

- Baselines. 21 widely recognized methods.
- Evaluation Protocol. 128 candidates are generated. The performances are recorded at 50th, 80th, and 100th percentiles (8 seeds).

^[3] Trabucco et al, "Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization", ICML 2022

^[4] Lorenz et al, "ViennaRNA Package 2.0", Algorithms for Molecular Biology 2011

Experiment results

Table 1: Experimental results on Design-bench

	Benchmarks				
Method	Ant	D'Kitty	TFBind8	TFBind10	Mean Rank
D_o (best)	0.565	0.884	0.439	0.467	-
BO-qEI	0.812 ± 0.000	0.896 ± 0.000	0.825 ± 0.091	0.627 ± 0.033	16.75 / 22
CMA-ES	1.561 ± 0.896	0.724 ± 0.001	0.939 ± 0.039	0.664 ± 0.034	8.00 / 22
REINFORCE	0.263 ± 0.026	0.573 ± 0.204	0.961 ± 0.034	0.618 ± 0.011	17.00 / 22
GA	0.293 ± 0.029	0.860 ± 0.021	0.985 ± 0.011	0.638 ± 0.032	12.75 / 22
COMs	0.882 ± 0.044	0.932 ± 0.006	0.940 ± 0.027	0.621 ± 0.033	13.25 / 22
CbAS	0.846 ± 0.033	0.895 ± 0.016	0.903 ± 0.028	0.649 ± 0.055	12.50 / 22
MINs	0.894 ± 0.022	0.939 ± 0.004	0.908 ± 0.063	0.630 ± 0.019	12.50 / 22
GA on GP	0.948 ± 0.013	0.946 ± 0.001	0.770 ± 0.087	0.654 ± 0.038	9.25 / 22
RoMA	0.593 ± 0.066	0.829 ± 0.020	0.665 ± 0.000	0.553 ± 0.000	20.00 / 22
ICT	0.911 ± 0.030	0.945 ± 0.011	0.888 ± 0.047	0.624 ± 0.033	13.50 / 22
Tri-mentoring	0.944 ± 0.033	0.950 ± 0.015	0.899 ± 0.045	0.647 ± 0.039	9.00 / 22
MATCH-OPT	0.931 ± 0.011	0.957 ± 0.014	0.977 ± 0.004	0.543 ± 0.002	9.50 / 22
PGS	0.949 ± 0.017	0.966 ± 0.013	0.981 ± 0.015	0.532 ± 0.000	7.75 / 22
LTR	0.907 ± 0.032	0.960 ± 0.014	0.973 ± 0.000	0.652 ± 0.039	6.25 / 22
DDOM	0.930 ± 0.029	0.925 ± 0.008	0.885 ± 0.061	0.634 ± 0.015	13.75 / 22
GTG	0.865 ± 0.040	0.935 ± 0.010	0.901 ± 0.039	0.639 ± 0.016	12.50 / 22
BDI	0.964 ± 0.000	0.941 ± 0.000	0.973 ± 0.000	0.636 ± 0.020	7.50 / 22
RGD	0.922 ± 0.020	0.883 ± 0.014	0.889 ± 0.068	0.644 ± 0.048	13.00 / 22
BONET	0.948 ± 0.025	0.957 ± 0.008	0.894 ± 0.086	0.606 ± 0.024	10.75 / 22
GABO	0.224 ± 0.051	0.719 ± 0.001	0.939 ± 0.038	0.639 ± 0.033	15.25 / 22
DEMO	0.948 ± 0.013	0.956 ± 0.011	0.812 ± 0.054	0.648 ± 0.042	9.25 / 22
ROOT (ours)	0.965 ± 0.014	0.972 ± 0.005	0.986 ± 0.007	0.685 ± 0.053	1.25 / 22

Table 2: Results Biological RNA Tasks

Method	RNA-A	RNA-B	RNA-C	Mean Rank
CbAS	0.270 ± 0.098	0.249 ± 0.088	0.261 ± 0.093	6.00 / 8
BO-qEI	0.537 ± 0.106	0.517 ± 0.108	0.481 ± 0.100	3.67 / 8
GA	0.518 ± 0.120	0.499 ± 0.100	0.496 ± 0.091	4.33 / 8
COMs	0.187 ± 0.123	0.144 ± 0.121	0.209 ± 0.100	7.67 / 8
REINFORCE	0.166 ± 0.096	0.149 ± 0.081	0.225 ± 0.075	7.33 / 8
BDI	0.604 ± 0.000	0.505 ± 0.000	0.411 ± 0.000	4.00 / 8
Boot-Gen	0.913 ± 0.064	0.881 ± 0.024	0.786 ± 0.039	2.00 / 8
ROOT (ours)	0.956 ± 0.023	0.955 ± 0.013	0.922 ± 0.013	1.00 / 8

ROOT establishes a new state-of-the-art performance with the highest rank across benchmarks.

for listening