

RankMatch: A Novel Approach to Semi-Supervised Label Distribution Learning Leveraging Rank Correlation between Labels

Zhiqiang Kou^{1,2}, Yucheng Xie^{1,2}, Hailin Wang⁵, Junyang Chen^{1,2}, Jing Wang^{1,2}, Ming-kun Xie³, Shuo Chen³, Yuheng Jia^{1,2}*, Tongliang Liu⁴, Xin Geng^{1,2}*

¹School of Computer Science and Engineering, Southeast University, China
²Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, China
³RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
⁴Sydney AI Centre, The University of Sydney, Australia
⁵School of Mathematics and Statistics, Xian Jiaotong University, China
{zhiqiang_kou, xieyc, chenjunyang, wangjing91, yhjia, xgeng}@seu.edu.cn, {ming-kun.xie, shuo.chen.ya}@riken.jp, wanghailin97@163.com, tongliang.liu@sydney.edu.au

(a)

When an instance is associated with multiple labels at the same time, those labels are seldom equally important for that instance; instead, they typically differ in their relative importance or priority.

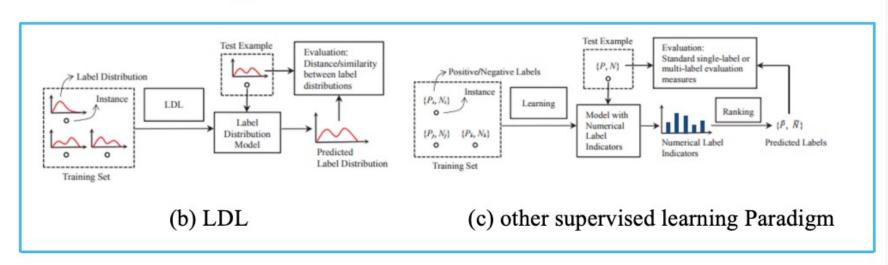
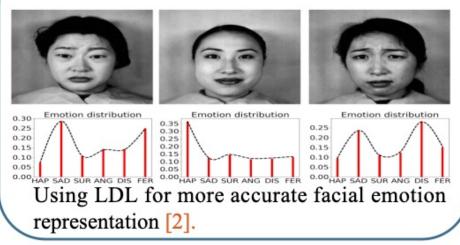


Figure 1 introduces single-label learning, multi-label learning, and label distribution learning.

[1] Geng, X., 2016. Label Distribution Learning. IEEE Transactions on Knowledge and Data Engineering, 28(7): 1734–1748



Use LDL for Mars composition prediction

NASA [1] uses LDL to predict trace elements in Martian craters.

Using LDL for Facial Expression Recognition

^[1] Chow B J. Forming infrastructural materials by mechanical compaction of lunar and Martian regolith simulants[M]. University of California, San Diego, 2016.

^[2] Geng X, Zhou Z H, Smith-Miles K. Automatic age estimation based on facial aging patterns[J]. IEEE Transactions on pattern analysis and machine intelligence, 2007, 29(12): 2234-2240.

^[3] Geng X, Wang Q, Xia Y. Facial age estimation by adaptive label distribution learning[C]. 2014 22nd International Conference on Pattern Recognition. IEEE, 2014: 4465-4470.

Challenge: Obtaining label distribution is very expensive and time-consuming.

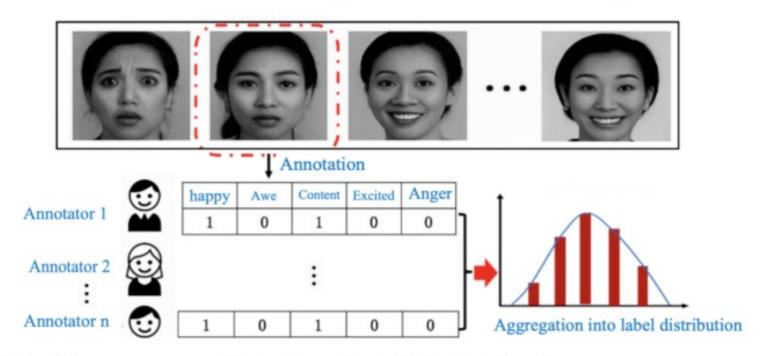
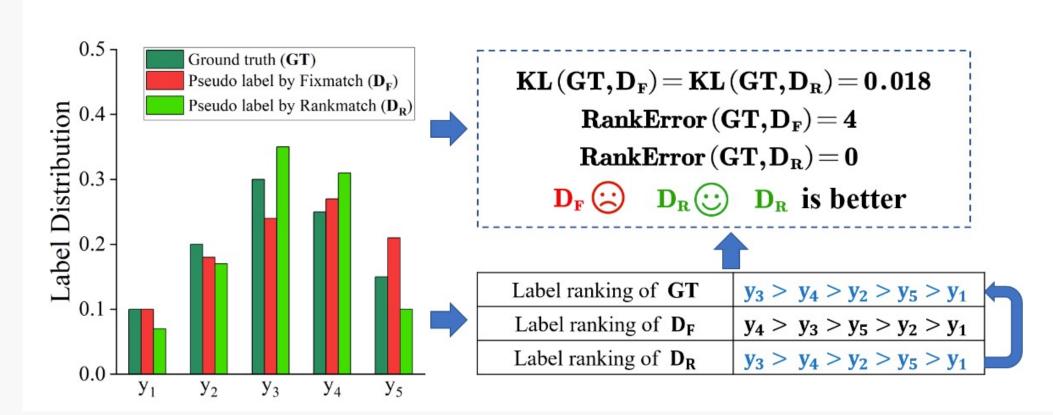


Fig. The process of labeling the label distribution.


Due to the high expertise required for annotation and the substantial labeling cost, real-world datasets often contain few labeled samples.

RankMatch: A Novel Approach to Semi-Supervised Label Distribution Learning Leveraging Rank Correlation between Labels

Existing semi-supervised techniques often fail in Semi-Supervised Label Distribution Learning (SSLDL) because, during training on labeled data, the model focuses solely on minimizing the overall similarity between the predicted and true label distributions (e.g., using KL divergence as the loss function), without learning the rank correlation among labels. This neglect of label ordering leads to biased pseudo-labels.

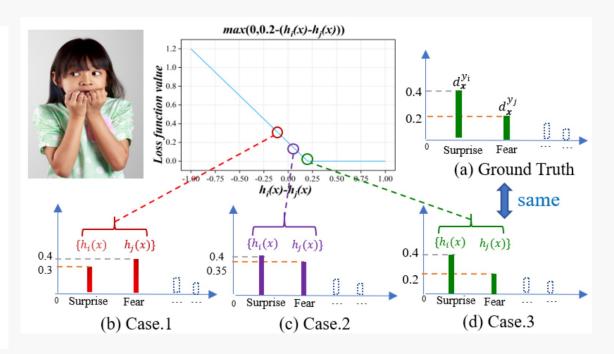
Problem Statement and Notation

In SSLDL, the training data consists of a labeled dataset $\mathcal{D}_L = \{(\mathbf{x}_i, \mathbf{d}_i) | i = 1, 2, ..., n\}$ and an unlabeled dataset $\mathcal{D}_U = \{\mathbf{x}_g | g = 1, 2, ..., m\}$. Here, n and m represent the number of labeled and unlabeled samples, respectively. In the labeled dataset \mathcal{D}_L , \mathbf{x}_i is a labeled sample, and $\mathbf{d}_i = \{d^{y_1}_{\mathbf{x}_i}, d^{y_2}_{\mathbf{x}_i}, ..., d^{y_c}_{\mathbf{x}_i}\}$ is the corresponding label distribution, where $d^{y_j}_{\mathbf{x}_i}$ represents the importance or relevance of label y_j to sample \mathbf{x}_i . The label distribution satisfies the normalization constraint $\sum_{j=1}^c d^{y_j}_{\mathbf{x}_i} = 1$. c denotes the number of labels in the label space $\mathcal{Y} = \{y_1, y_2, ..., y_c\}$.

Supervised training phase . First, this work adopts the KL divergence as the loss function, where $Aug_w(X_i)$ denotes the data augmentation applied to the input.

$$\mathcal{L}_s = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^c d_{\mathbf{x}_i}^{y_j} \ln \left(\frac{d_{\mathbf{x}_i}^{y_j}}{h(y_j \mid \text{Aug}_w(\mathbf{x}_i); \theta)} \right)$$

$$h(y_j|\mathbf{x}_i;\theta) = \frac{\exp(f_j(\mathbf{x}_i;\theta))}{\sum_{q=1}^c \exp(f_q(\mathbf{x}_i;\theta))}$$


Supervised training phase: To generate more reliable pseudo-labels, we propose a pairwise relevance ranking loss:

$$\mathcal{L}_{PRR_L} = \sum_{1 < j < k < c} \Big(s(j,k) \cdot g_\delta(j,k) + s(k,j) \cdot g_\delta(k,j) \Big),$$

Here, $\delta = d_{\mathbf{x}_i}^{y_j} - d_{\mathbf{x}_i}^{y_k}$, and f(j,k) and $g_{\delta}(j,k)$ are defined as follows:

$$s(j,k) = \begin{cases} 1, & \text{if } d_{\mathbf{x}_i}^{y_j} > d_{\mathbf{x}_i}^{y_k} \text{ and } d_{\mathbf{x}_i}^{y_j} - d_{\mathbf{x}_i}^{y_k} > t, \\ 0, & \text{otherwise.} \end{cases}$$

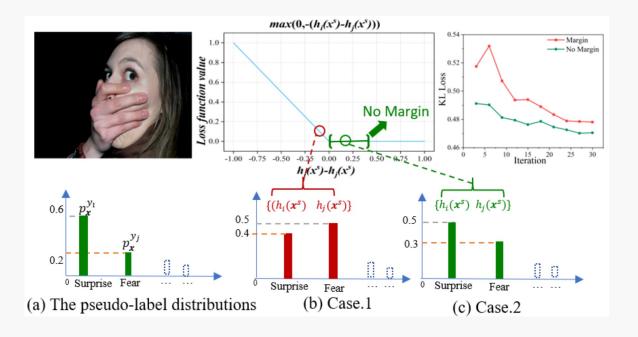
$$g_{\delta}(j,k) = \begin{cases} 0, & \text{if } h_{j}(\mathbf{x}_{i}) - h_{k}(\mathbf{x}_{i}) \geq \delta, \\ \delta - (h_{j}(\mathbf{x}_{i}) - h_{k}(\mathbf{x}_{i})), & \text{otherwise.} \end{cases}$$

Unsupervised training phase: An ensemble learning approach is used to assign pseudo-labels to unlabeled samples.

$$\mathbf{p}_{i}(y_{j}) = \frac{\exp\left(\frac{1}{H}\sum_{k=1}^{H} f_{j}(\operatorname{Aug}_{w}(\mathbf{x})_{k}; \theta)\right)}{\sum_{q=1}^{c} \exp\left(\frac{1}{H}\sum_{k=1}^{H} f_{q}(\operatorname{Aug}_{w}(\mathbf{x})_{k}; \theta)\right)},$$

The average of the model outputs from multiple weak augmentations of unlabeled images is used as the pseudo-label distribution. Then, KL divergence is used as the loss function.

$$\mathcal{L}_{uc} = \frac{1}{m} \sum_{u=1}^{m} \sum_{j=1}^{c} p_{\mathbf{x}_u}^{y_j} \ln \left(\frac{p_{\mathbf{x}_u}^{y_j}}{h\left(y_j \mid \mathrm{Aug}_s(\mathbf{x}_u); \theta\right)} \right),$$



Unsupervised training phase: flexibly utilizing the ranking relationships between pseudo-labels

$$\mathcal{L}_{PRR_u} = \sum_{1 < j < k < c} \Big(s(j,k) \cdot g_0(j,k) + s(k,j) \cdot g_0(k,j) \Big),$$
 where:
$$s(j,k) = \begin{cases} 1, & \text{if } p_{\mathbf{x}_i}^{y_j} >_{\mathbf{x}_i}^{y_k} \text{ and } p_{\mathbf{x}_i}^{y_j} - p_{\mathbf{x}_i}^{y_k} > t, \\ 0, & \text{otherwise.} \end{cases}$$

$$g_0(j,k) = egin{cases} 0, & ext{if } h_j(\mathbf{x}_i^s) - h_k(\mathbf{x}_i^s) \geq 0, \ h_k(\mathbf{x}_i^s) - h_j(\mathbf{x}_i^s), & ext{otherwise}. \end{cases}$$

A collection of numbers: A collection of four LDL images and emotions.

Twitter-LDL: A large-scale visual sentiment distribution dataset built from Twitter, containing eight distinct emotions: pleasure, anger, awe, satisfaction, disgust, excitement, fear, and sadness. Approximately 30,000 images were collected by searching various sentiment keywords such as "sadness," "heartbreak," and "grief." Eight annotators were then hired to label the dataset. The final Twitter LDL dataset contains 10,045 images.

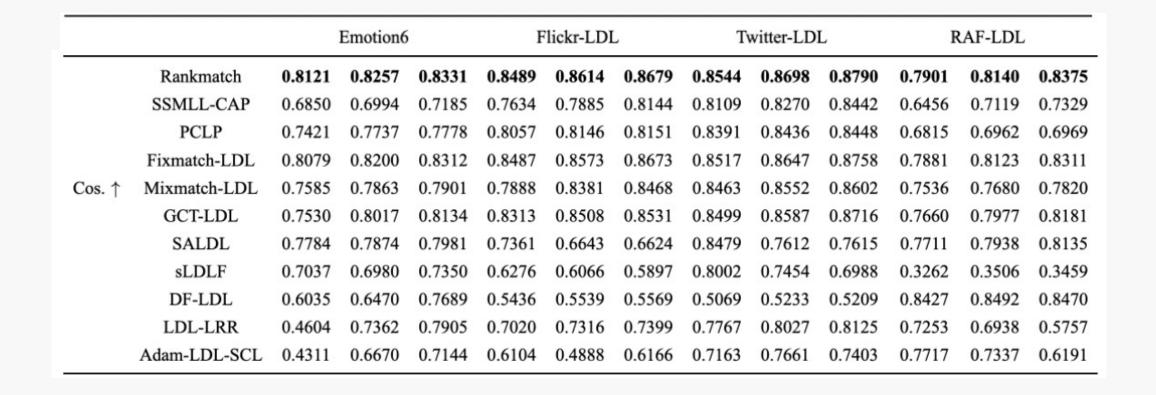
Flickr-LDL: A subset of the Flickr dataset. Unlike other datasets that use sentiment words to search for images, the Flickr dataset collects 1200 adjective-noun pairs, totaling 500,000 images. We hired 11 annotators to label this subset with eight common emotions. The final Flickr LDL dataset contains 10,700 images, with roughly equal numbers of images in each category.

Emotion6: We used six category keywords and their synonyms as search terms, collecting 1,980 images from Flickr for Emotion6. 330 images were collected for each category, and each image was assigned to only one category (dominant sentiment). Emotion6 represents the sentiment associated with each image as a probability distribution, containing 7 intervals, including Ekman's 6 basic sentiments and neutrality.

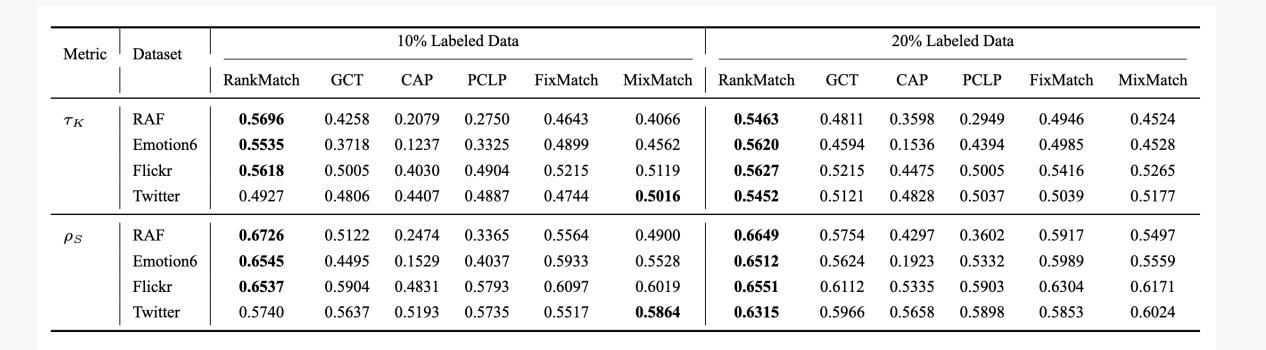
RAF-LDL: RAF-LDL is a multi-labeled facial expression dataset containing approximately 5,000 diverse facial images downloaded from the internet. These images vary in sentiment, subject identity, head pose, lighting conditions, and occlusion. During the annotation process, 315 trained annotators were employed to ensure each image was annotated a sufficient number of times independently. Images with a multi-peaked label distribution were selected to constitute RAF-LDL.

		Emotion6			F	Flickr-LDL			Twitter-LDL			RAF-LDL		
	Method	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%	
	Rankmatch	3.3902	3.3176	3.2504	4.4060	3.9964	3.9013	3.7370	3.6962	3.2913	3.0178	2.9358	2.8341	
	SSMLL-CAP	3.7951	3.7613	3.7248	5.3827	5.3235	5.2676	5.8983	5.7659	5.6366	3.4385	3.2808	3.1966	
	PCLP	3.7011	3.6017	3.6030	5.2781	5.2292	5.1966	5.4909	5.3738	5.4133	3.3696	3.3383	3.3310	
	Fixmatch-LDL	3.5080	3.5680	3.6050	5.5570	5.5310	5.4350	6.1750	6.0060	5.8340	3.1220	3.0920	3.0770	
Can.↓	Mixmatch-LDL	3.6080	3.4860	3.4880	5.6450	5.5026	5.5750	6.3530	6.2489	6.2960	3.1580	3.1111	3.0630	
	GCT-LDL	3.5980	3.5490	3.6410	5.5860	5.5872	5.5260	6.3010	6.3078	6.2380	3.1920	3.1260	3.1470	
	SALDL	3.4836	3.3737	3.1931	5.4612	4.7789	4.8199	5.0380	4.0868	4.0742	3.1947	3.1415	3.0527	
	sLDLF	4.4164	4.3398	4.1322	6.2280	6.1238	6.2589	5.3084	6.0008	6.1910	4.0586	4.1705	4.1189	
	DF-LDL	4.2427	4.0717	3.7221	5.5348	5.5549	5.5207	6.4184	6.3120	6.2588	3.3281	3.3865	3.3582	
	LDL-LRR	4.6528	4.0496	3.7719	5.6325	5.4988	5.4319	6.4215	6.3295	6.2905	3.8677	4.0116	4.1890	
	Adam-LDL-SCL	4.0815	4.1128	4.1204	6.1634	5.9889	5.6508	6.5220	6.4081	6.3575	3.0891	3.0242	2.9912	

		E	Emotion6			Flickr-LDL			Twitter-LDL			RAF-LDL		
	Method	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%	
	Rankmatch	1.5298	1.5050	1.4834	1.8189	1.7051	1.6737	1.6480	1.6190	1.5138	1.4506	1.4190	1.3843	
	SSMLL-CAP	1.6705	1.6611	1.6502	2.1222	2.0988	2.0820	2.2590	2.2155	2.1733	1.5918	1.5332	1.5082	
	PCLP	1.6397	1.6059	1.6083	2.0601	2.0478	2.0328	2.1002	2.0623	2.0728	1.5689	1.5636	1.5593	
	Fixmatch-LDL	1.5950	1.6230	1.6390	2.2220	2.2110	2.1910	2.3830	2.3310	2.2820	1.5130	1.5060	1.5050	
Cla. ↓	Mixmatch-LDL	1.6240	1.5810	1.5840	2.2330	2.1996	2.2160	2.4280	2.4034	2.4150	1.5150	1.5020	1.4870	
	GCT-LDL	1.6090	1.6050	1.6390	2.2200	2.2238	2.2080	2.4170	2.4216	2.4060	1.5350	1.5170	1.5290	
	SALDL	1.6019	1.5751	1.5100	2.1967	2.0369	2.0446	2.1288	1.8938	1.8964	1.5445	1.5288	1.5035	
	sLDLF	1.8922	1.8566	1.8049	2.3722	2.3436	2.3761	2.1480	2.3384	2.3746	1.9300	1.9645	1.9750	
	DF-LDL	1.8217	1.7746	1.6781	2.2253	2.2072	2.1992	2.4313	2.4108	2.4033	1.6071	1.6229	1.6138	
	LDL-LRR	1.9899	1.7745	1.6953	2.2285	2.2026	2.1919	2.4429	2.4223	2.4121	1.7907	1.8298	1.8919	
10	Adam-LDL-SCL	1.7851	1.7976	1.8014	2.3534	2.3093	2.2312	2.4639	2.4324	2.4160	1.5134	1.4980	1.4905	



			Emotion6			Flickr-LDL			Twitter-LDL			RAF-LDL		
	Method	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%	
	Rankmatch	0.6735	0.6832	0.6940	0.6921	0.7073	0.7151	0.7036	0.7190	0.7316	0.6551	0.6813	0.7044	
	SSMLL-CAP	0.5479	0.5587	0.5666	0.5815	0.6125	0.6377	0.6034	0.6324	0.6577	0.5264	0.5876	0.6092	
	PCLP	0.6059	0.6370	0.6363	0.6392	0.6469	0.6490	0.6707	0.6784	0.6780	0.5471	0.5588	0.5590	
	fixmatch-LDL	0.6638	0.6797	0.6916	0.6857	0.7042	0.7119	0.7009	0.7147	0.7283	0.6570	0.6760	0.6987	
Int. ↑	Mixmatch-LDL	0.6372	0.6418	0.6496	0.6639	0.6686	0.6831	0.6819	0.6806	0.6986	0.6133	0.6381	0.6534	
	GCT-LDL	0.6116	0.6602	0.6770	0.6639	0.6879	0.6863	0.6787	0.7018	0.7102	0.6321	0.6669	0.6910	
	SALDL	0.6457	0.6612	0.6723	0.5559	0.5108	0.5091	0.6632	0.5724	0.5687	0.6298	0.6504	0.6708	
	sLDLF	0.5935	0.5861	0.6162	0.4813	0.4750	0.4616	0.6487	0.5652	0.5336	0.2433	0.2315	0.2199	
	DF-LDL	0.5057	0.5461	0.6353	0.4173	0.4176	0.4169	0.3541	0.3536	0.3505	0.7022	0.7083	0.7085	
	LDL-LRR	0.3721	0.6213	0.6626	0.5322	0.5519	0.5600	0.5746	0.5904	0.5979	0.5649	0.5389	0.4411	
	Adam-LDL-SCL	0.3409	0.5627	0.6040	0.4724	0.3933	0.4628	0.5488	0.5828	0.5200	0.6177	0.5768	0.4843	



		Che.↓	Cla.↓	Can.↓	KL↓	Cos.↑	Int.↑
Flickr	pretrain pretrain + consistency pretrain + consistency+PRR loss	` ' '	` '/	` '/	0.5371 0.5293(1.5%↑) 0.5227(1.2% ↑)	` '/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		Che.↓	Cla.↓	Can.↓	KL↓	Cos.↑	Int.↑
RAF	pretrain pretrain + consistency pretrain + consistency+PRR loss	` '/	` '/	` '/	0.5146 0.3699(28.1%†) 0.3464(6.4%†)	` '/	` '/

	anger	digust	fear	joy	sad	surprise	netural
Ground Truth	0.07	0.17	0.06	0.03	0.36	0.03	0.28
Rankmatch-LDL	0.02	0.04	0.05	0.08	0.50	0.08	0.23
Fixmatch-LDL	0.03	0.08	0.13	0.17	0.16	0.16	0.27
Mixmatch-LDL	0.04	0.06	0.28	0.12	0.23	0.09	0.18
GCT-LDL	0.04	0.06	0.12	0.24	0.15	0.10	0.29

	surprise	fear	disgust	happy	sad	anger
Ground Truth	0.45	0.52	0.00	0.00	0.00	0.03
Rankmatch-LDL	0.37	0.52	0.02	0.00	0.08	0.01
Fixmatch-LDL	0.45	0.32	0.04	0.03	0.14	0.02
Mixmatch-LDL	0.39	0.10	0.19	0.09	0.13	0.10
GCT-LDL	0.30	0.19	0.05	0.03	0.42	0.01

	anger	digust	fear	joy	sad	surprise	netural
Ground Truth	0.00	0.00	0.00	0.63	0.00	0.20	0.17
Rankmatch-LDL	0.01	0.04	0.11	0.34	0.07	0.20	0.23
Fixmatch-LDL	0.02	0.12	0.06	0.20	0.06	0.09	0.45
Mixmatch-LDL	0.04	0.17	0.07	0.18	0.10	0.09	0.35
GCT-LDL	0.04	0.14	0.10	0.23	0.13	0.11	0.25

	surprise	fear	disgust	happy	sad	anger
Ground Truth	0.27	0.00	0.03	0.67	0.03	0.00
Rankmatch-LDL	0.35	0.02	0.02	0.59	0.00	0.02
Fixmatch-LDL	0.64	0.10	0.02	0.22	0.01	0.01
Mixmatch-LDL	0.55	0.13	0.07	0.06	0.15	0.03
GCT-LDL	0.44	0.17	0.08	0.12	0.15	0.04