MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search

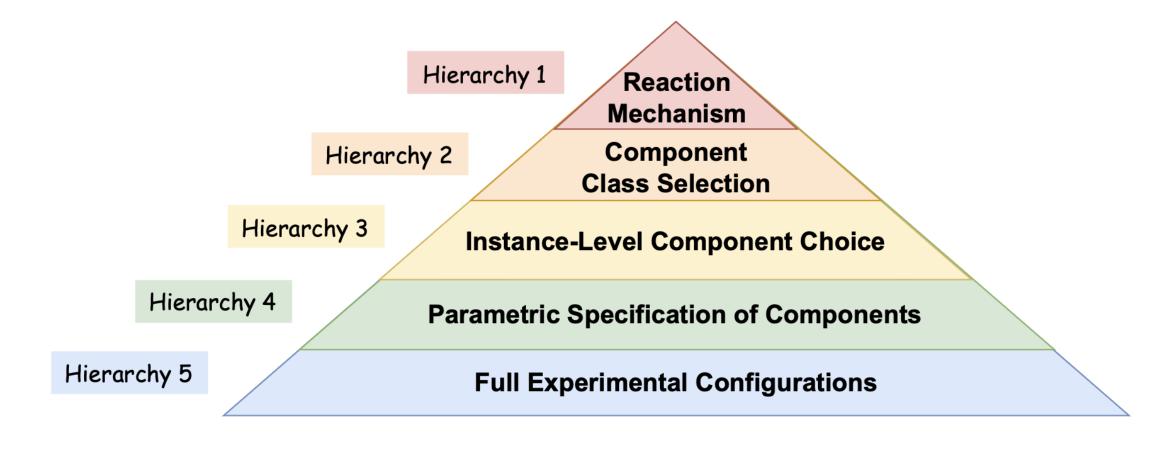
Zonglin Yang

Motivation

- Lack details
 - fine-grained hypothesis discovery
- Not yet best exploit LLM's capacity and potential

Fine-grained Hypothesis Discovery

- $h_c \rightarrow Method \rightarrow h_f$
- $h_f = \{h_c, d_1, ..., d_m\}$
- *d* represents:
 - Adding an element/detail
 - Deleting an existing element/detail
- $d \in D$
- $P(h_f|b,h_c)$ • $= P(\{d_1,...,d_m\}|b,h_c,D)$
- |D| = n
- Complexity: $C_n^m = \frac{n!}{m!(n-m)!}$


Challenges

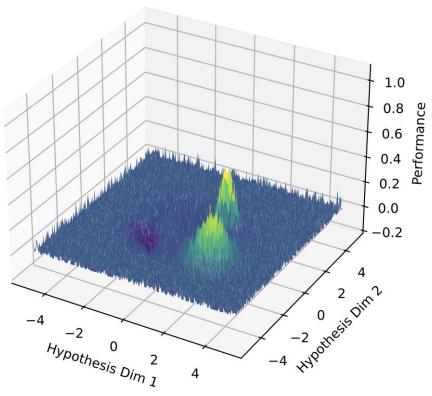
- *D* is implicit
- |D| can be very large
- Complexity (C_n^m) is intractable

Intrackable Complexity

- Classical algorithm for combinatorial complexity
 - Dynamic programming
- Problem structure
 - Optimal solution ← optimal solution of its subproblem
- Partition $\{d_1, \dots, d_m\}$ into p hierarchies
 - High-level concepts → low-level details
- Optimal solution of full $\{d_1,\dots,d_m\}\leftarrow$ optimal solution of $\{d\}$ in high-level concepts

Example Hierarchy for Chemistry

Intrackable Complexity

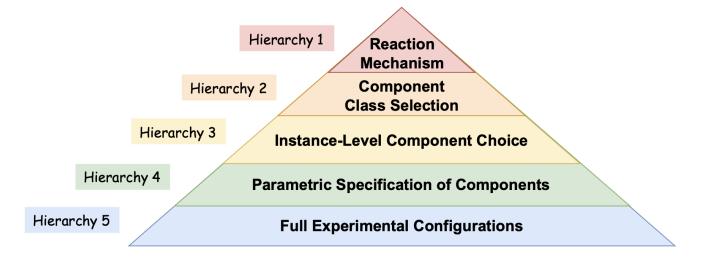

- Determining d in all p hierarchies \leftarrow iteration of determining d in each hierarchy sequentially
- Use approximate solution by heuristics rather than exhaustively search for the exact solution
 - LLM

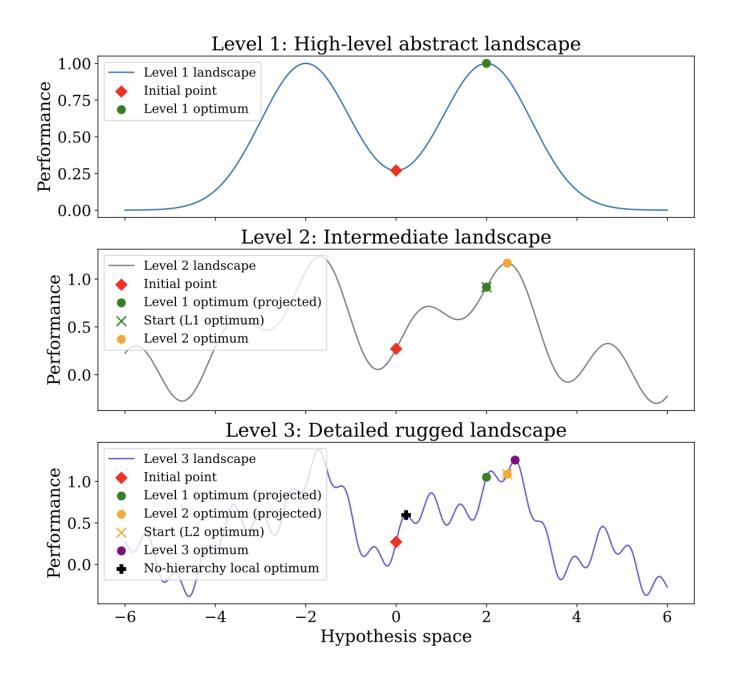
Motivation

- Lack details
 - fine-grained hypothesis discovery
- Not yet best exploit LLM's capacity and potential

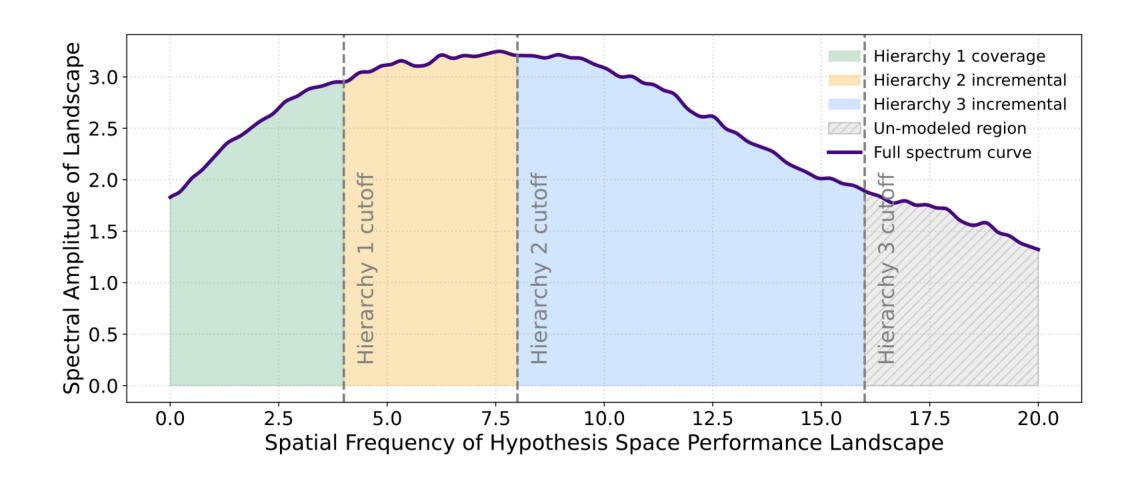
Exploit LLM's Upper Limit

- Definition of upper limit
 - Of all the hypotheses an LLM can possibly generate, the one that the LLM itself consider the best
- Consider a latent space
 - x-axis: hypothesis
 - y-axis: internal reward from LLM
- Upper limit:
 - The global maximum of the latent space
- In practice
 - Searching for a better local maximum

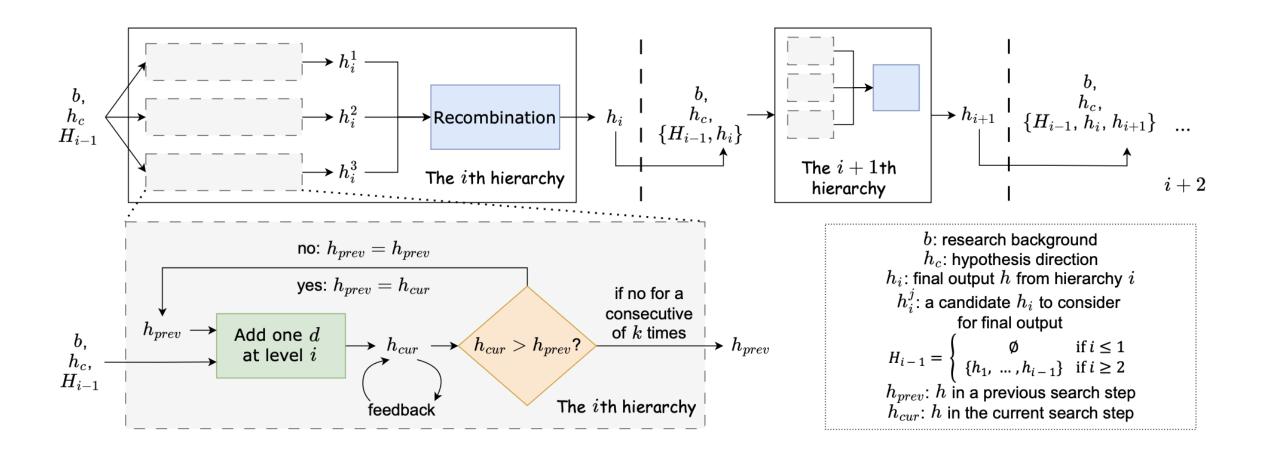



Exploit LLM's Upper Limit

- How human scientist do
 - To think of a hypothesis that themselves would think the best for experiment


Challenge: Exploit LLM's Upper Limit

- Very rugged reward landscape
 - Difficult for optimization
- Method: the hierarchical design
 - Smoothen the reward landscape by averaging



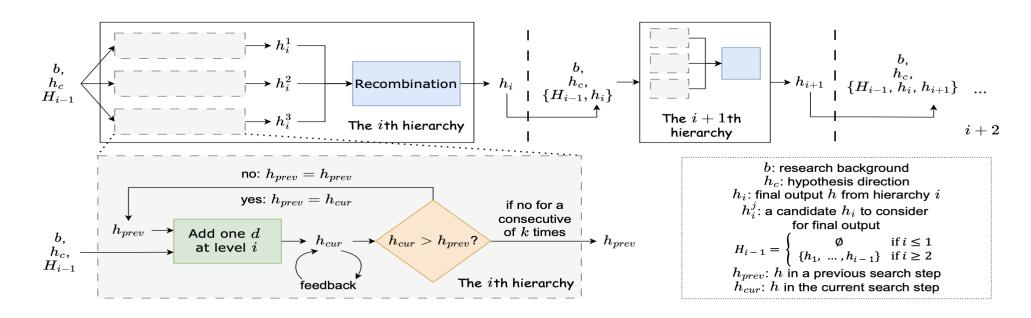
Low-Pass Filtering on Reward Landscape

Method

Research Questions

- How to reach to better local optimum?
- Does it really better?
- Reward landscape ← Multiple diverse LLMs
- Reward landscape ← Multiple same LLMs

Benchmark


- Extend TOMATO-Chem
- 51 papers published in good venues
 - Research background
 - Fine-grained hypothesis

Evaluation

- LLM pairwise evaluation
 - Which one is better optimum?
- Reference-based evaluation
 - How many details in annotated fine-grained hypothesis are recalled?

Baselines

- Greedy Search
- Greedy Search + Self-consistency

Question 1: How to reach to better local optimum?

	Effectiveness (LLM)	Novelty (LLM)	Detailedness (LLM)	Feasibility (LLM)	Overall (LLM)	Overall (Expert)			
HHS v.s. Greedy Search									
Win	74.51%	41.18%	71.57%	67.65%	73.53%	76.47%			
Tie	18.63%	18.63%	28.43%	10.78%	18.63%	15.69%			
Lose	6.86%	40.20%	0.00%	21.57%	7.84%	7.84%			
		HHS	v.s. Greedy Search + S	elf-consistency					
Win	59.31%	42.16%	56.37%	48.53%	53.43%	74.51%			
Tie	24.02%	8.33%	43.14%	18.63%	33.82%	17.65%			
Lose	16.67%	49.51%	0.49%	32.84%	12.75%	7.84%			
		Greedy Sea	arch + Self-consistency	v.s. Greedy Search					
Win	57.84%	48.04%	29.41%	51.96%	54.90%	62.75%			
Tie	22.55%	11.76%	65.69%	18.63%	34.31%	21.57%			
Lose	19.61%	40.20%	4.90%	29.41%	10.78%	15.69%			

Table 1: Comparison between HHS and baseline methods across LLM-based and expert evaluations.

Question 2: Does it really better?

	Soft Recall	Hard Recall
Greedy Search w/ Self-consistency	16.60% 31.50%	9.90% 17.70%
HHS	40.40%	23.00%

Table 2: Recall of ground-truth components by discovered hypotheses.

Question 3: Reward landscape ← Multiple Diverse LLMs

	EF (GT)	NV (GT)	DT (GT)	FS (GT)	OV (GT)	EF (GM)	NV (GM)	DT (GM)	FS (GM)	OV (GM)
Mixed committee v.s. GPT-4o-mini committee					GPT-40-m	ini committ	ee v.s. Gemi	ni-1.5-fl	ash committee	
Win	20.83%	33.33%	14.58%	33.33%	29.17%	27.08%	31.25%	14.58%	0.00%	18.75%
Tie	41.67%	20.83%	72.92%	18.75%	33.33%	58.33%	52.08%	77.08%	95.83%	68.75%
Lose	37.50%	45.83%	12.50%	47.92%	37.50%	14.58%	16.67%	8.33%	4.17%	12.50%
Gemini-1.5-flash committee v.s. GPT-4o-mini committee					Mixed committee v.s. Gemini-1.5-flash committee					
Win	16.67%	25.00%	6.25%	37.50%	16.67%	16.67%	33.33%	12.50%	6.25%	18.75%
Tie	41.67%	27.08%	79.17%	25.00%	52.08%	68.75%	35.42%	75.00%	93.75%	64.58%
Lose	41.67%	47.92%	14.58%	37.50%	31.25%	14.58%	31.25%	12.50%	0.00%	16.67%
Mixed committee v.s. Gemini-1.5-flash committee					Mixed committee v.s. GPT-4o-mini committee					
Win	29.17%	45.83%	10.42%	47.92%	27.08%	8.33%	29.17%	14.58%	6.25%	8.33%
Tie	56.25%	16.67%	85.42%	10.42%	50.00%	77.08%	39.58%	70.83%	93.75%	64.58%
Lose	14.58%	37.50%	4.17%	41.67%	22.92%	14.58%	31.25%	14.58%	0.00%	27.08%
	O ((T)T)	TICC .	443	TT 799 B.T	1. ((1)(1))	D . '1 1	(4770	122 173 11	111, ((0)	779 0 11

Table 3: "EF": Effectiveness, "NV": Novelty, "DT": Detailedness, "FS": Feasibility, "OV": Overall. "(GT)" and "(GM)" indicate that the pairwise evaluations were conducted by GPT-4o-mini and Gemini-1.5-flash, respectively.

Question 4: Reward landscape ← Multiple Same LLMs

	Effectiveness (LLM)	Novelty (LLM)	Detailedness (LLM)	Feasibility (LLM)	Overall (LLM)			
HHS-1 v.s. HHS-3								
Win	21.08%	25.49%	4.41%	41.67%	8.82%			
Tie	57.35%	28.92%	94.12%	28.92%	82.35%			
Lose	21.57%	45.59%	1.47%	29.41%	8.82%			

Table 4: Pairwise comparison between *HHS-1* and *HHS-3*.

Thank you!

• Q & A

My Twitter Code