

Neural Stochastic Flows: Solver-Free Modelling and Inference for SDE Solutions

Naoki Kiyohara^{1,2}, Edward Johns¹, Yingzhen Li¹

¹Imperial College London ²Canon Inc.

Project page

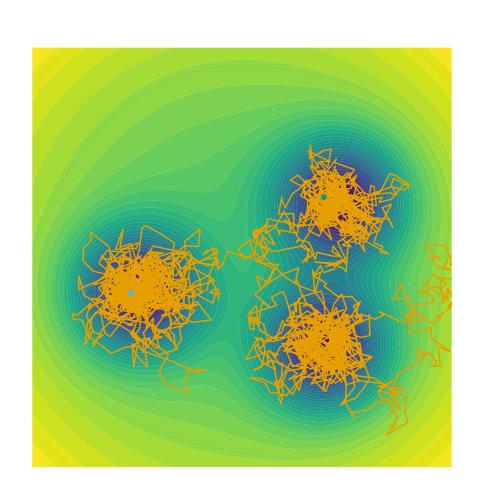
Stochastic Differential Equations (SDEs) are Everywhere

Itô SDE:
$$dx_t = \mu(x_t, t) dt + \sigma(x_t, t) dW_t$$
, $x_0 \sim p_0$

Drift term Diffusion term (deterministic) (stochastic)

Finance

Physics



Generative Modelling

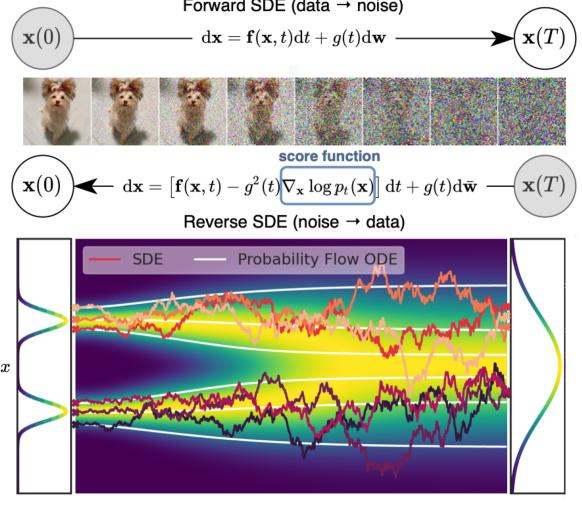


Figure adapted from [47]

Neural SDEs

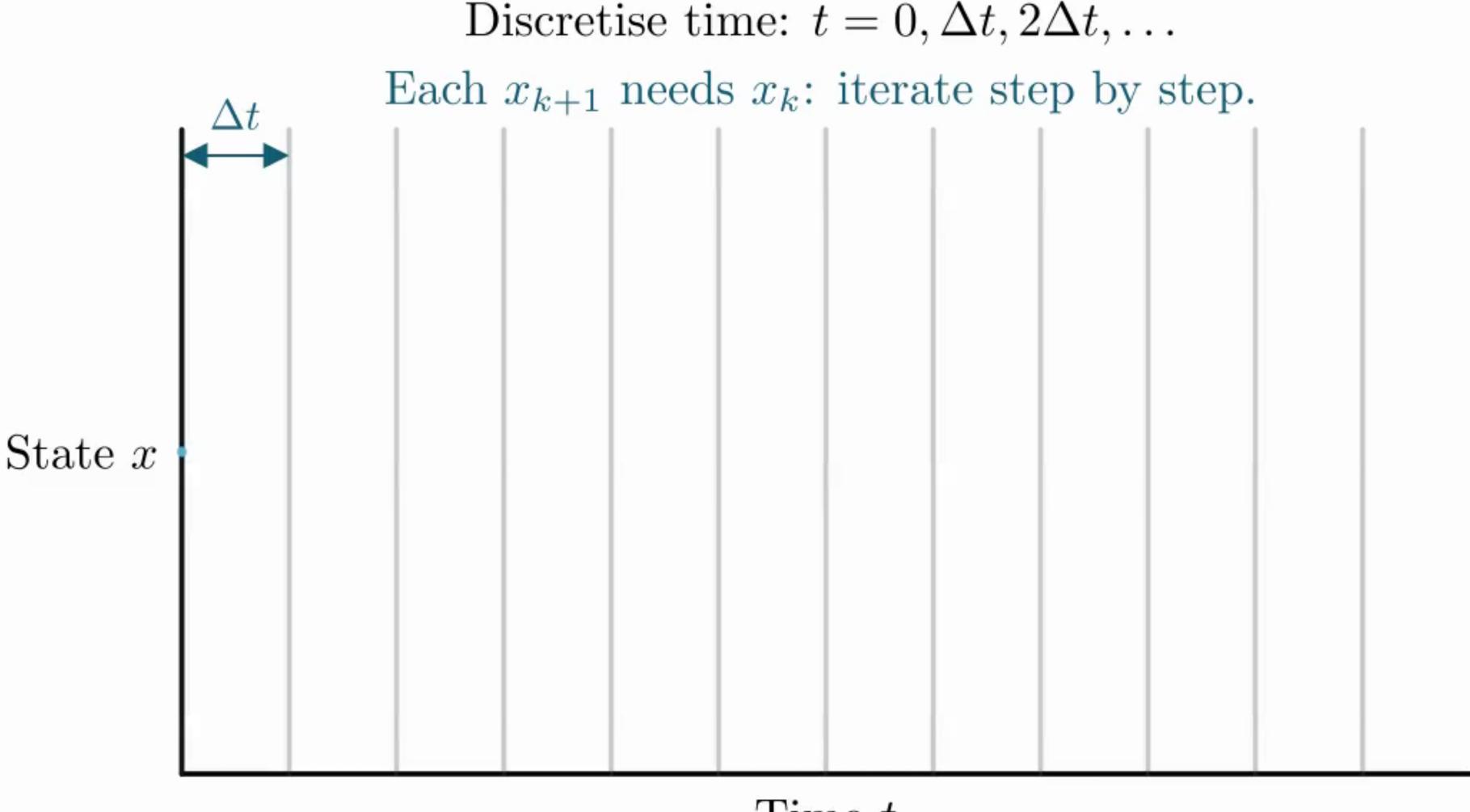
Modelling SDE Terms using Neural Networks

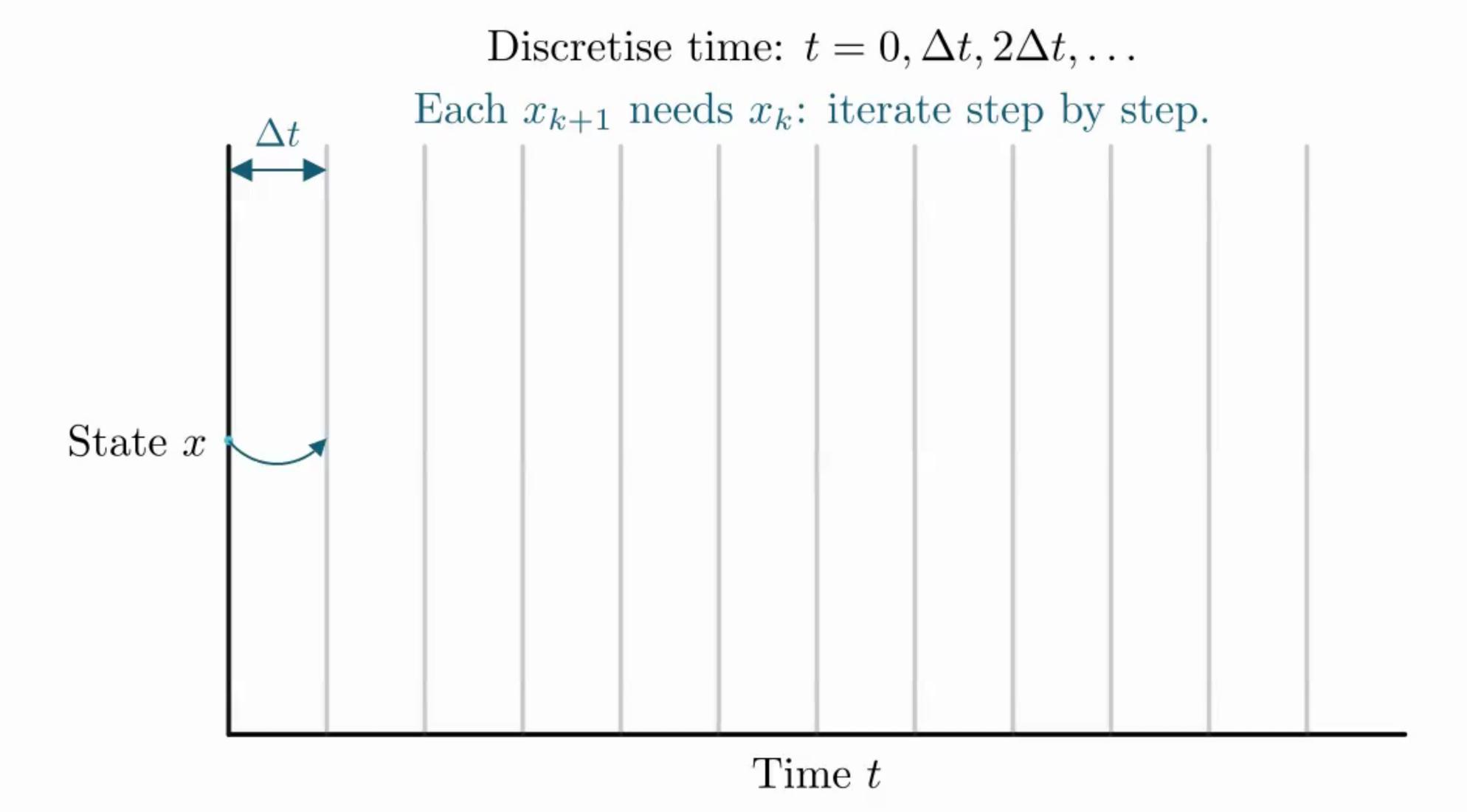
Itô SDE:
$$dx_t = \mu(x_t, t) dt + \sigma(x_t, t) dW_t, \quad x_0 \sim p_0$$

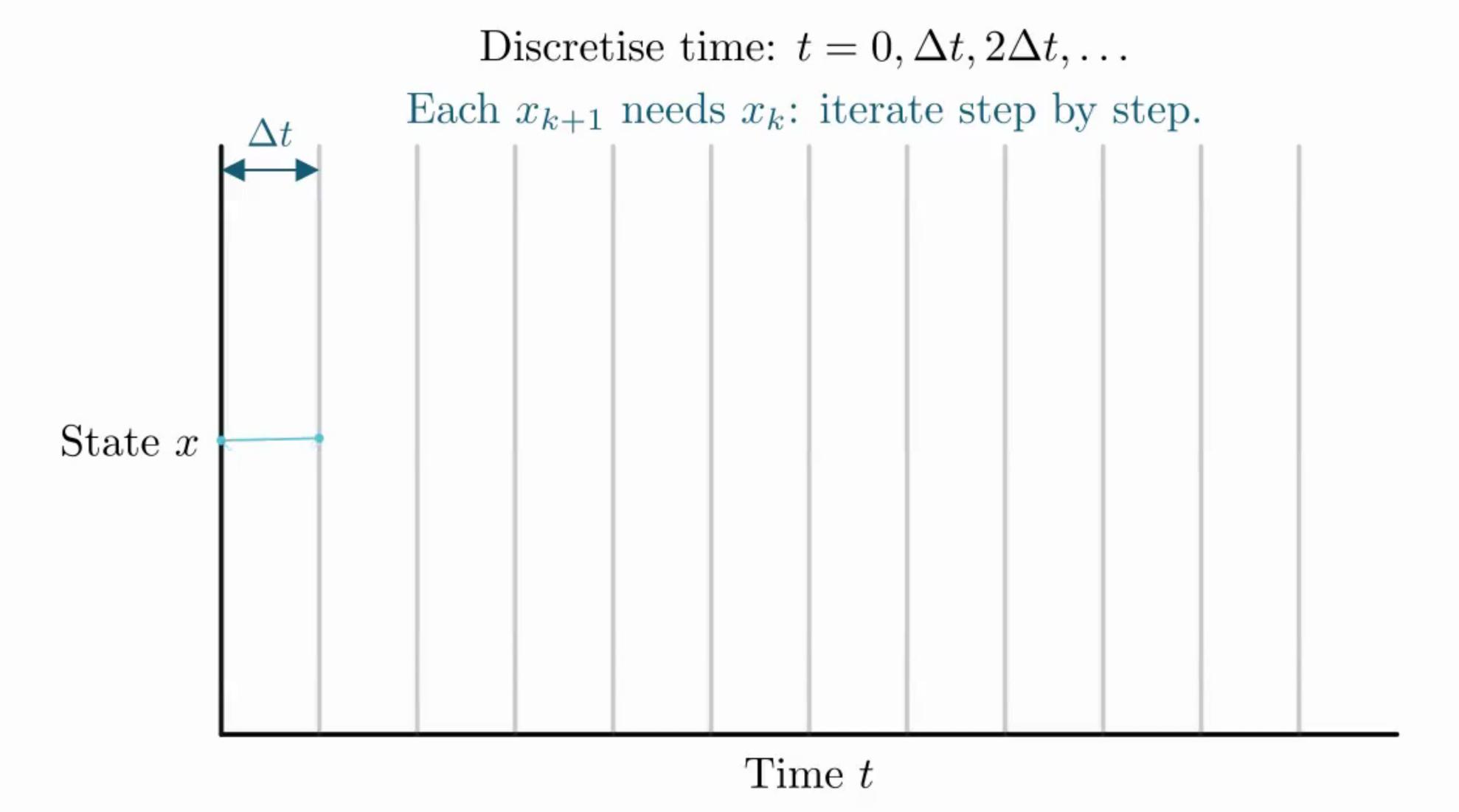
Modelled by neural networks

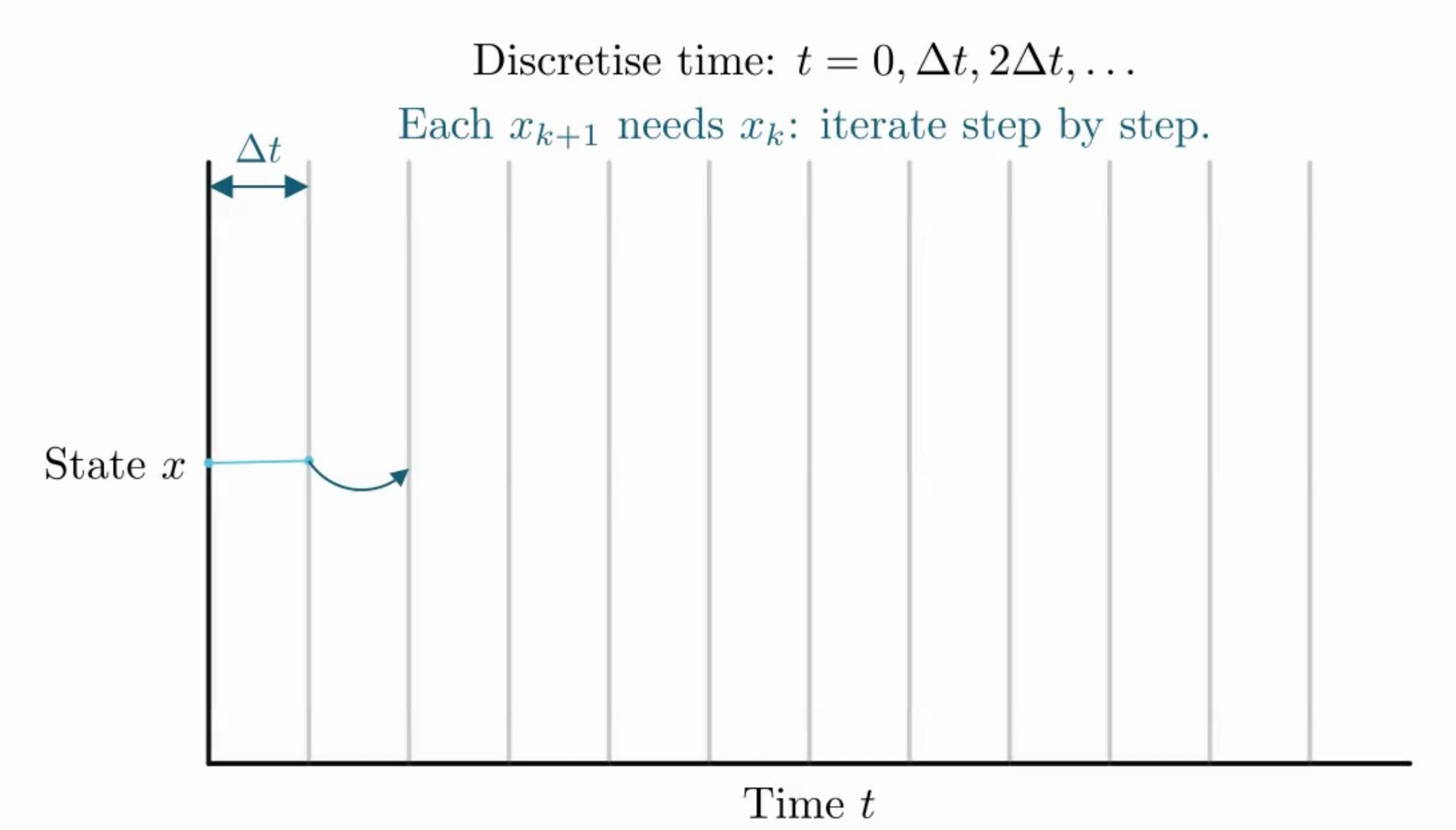
$$x_{t_{k+1}} = x_{t_k} + \mu(x_{t_k}, t_k) \Delta t + \sigma(x_{t_k}, t_k) \Delta W_k$$

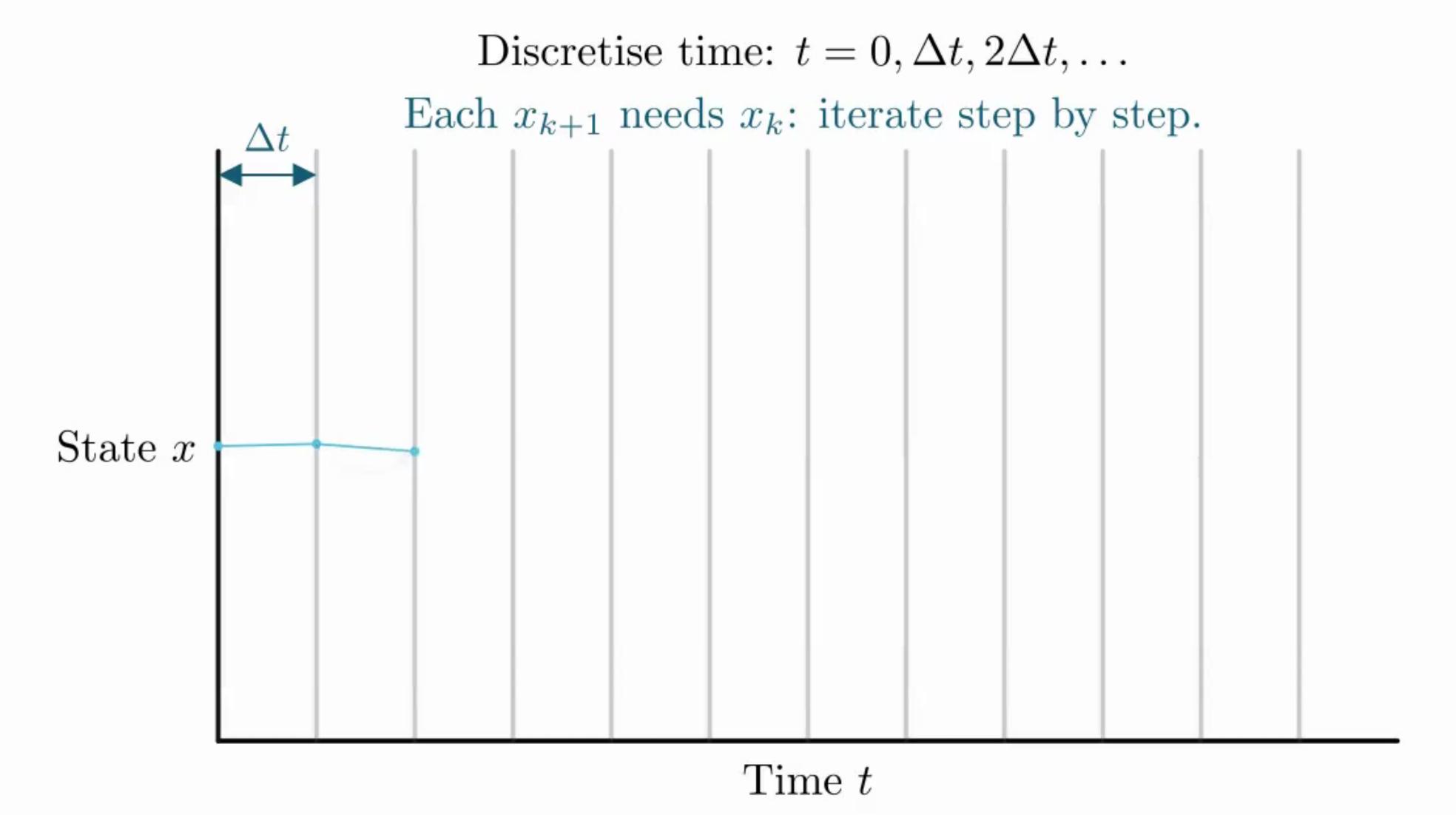
$$t_k = k\Delta t$$
, $\Delta W_k = W_{t_{k+1}} - W_{t_k} \sim \mathcal{N}(0, \Delta t)$

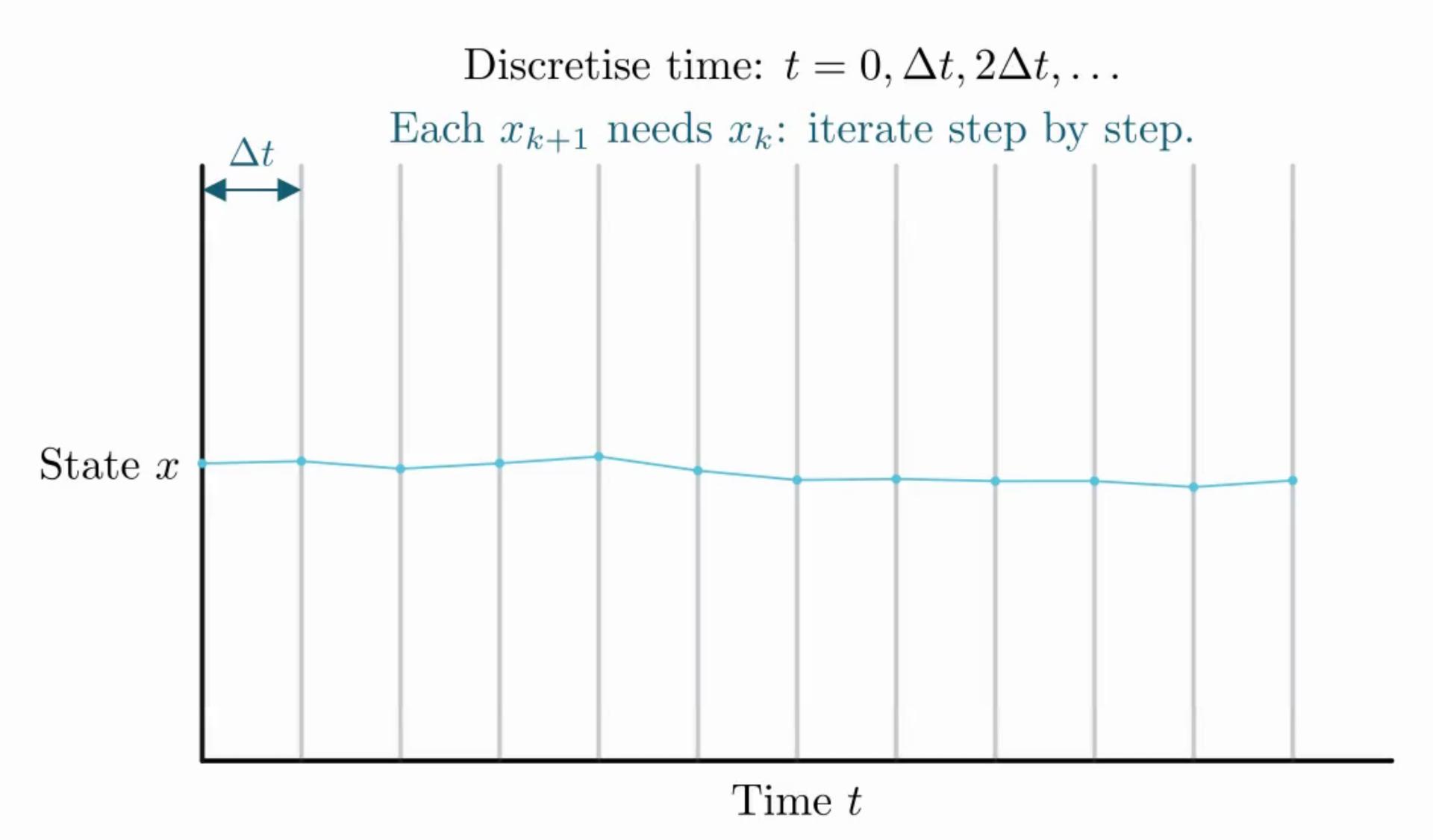


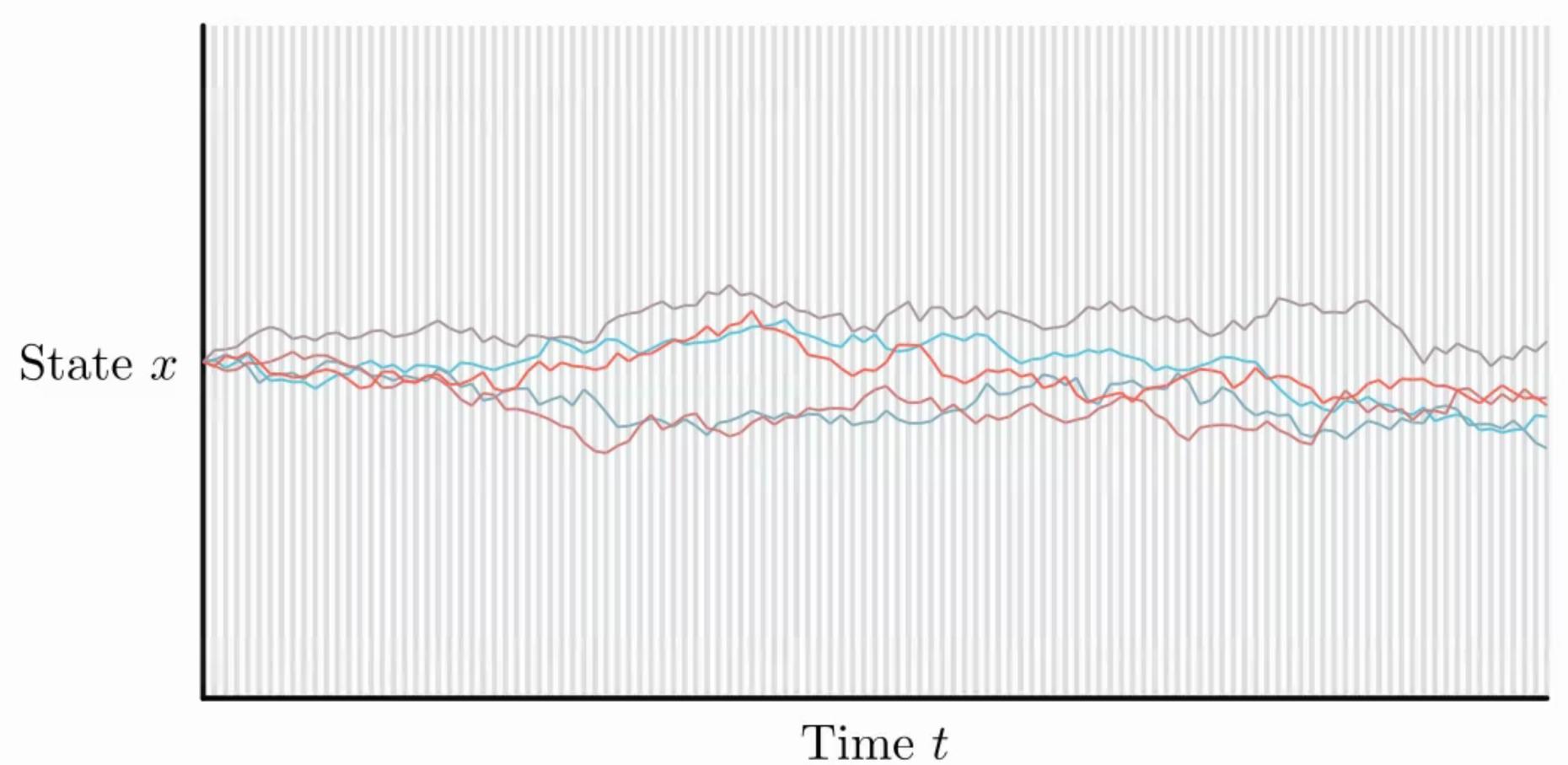


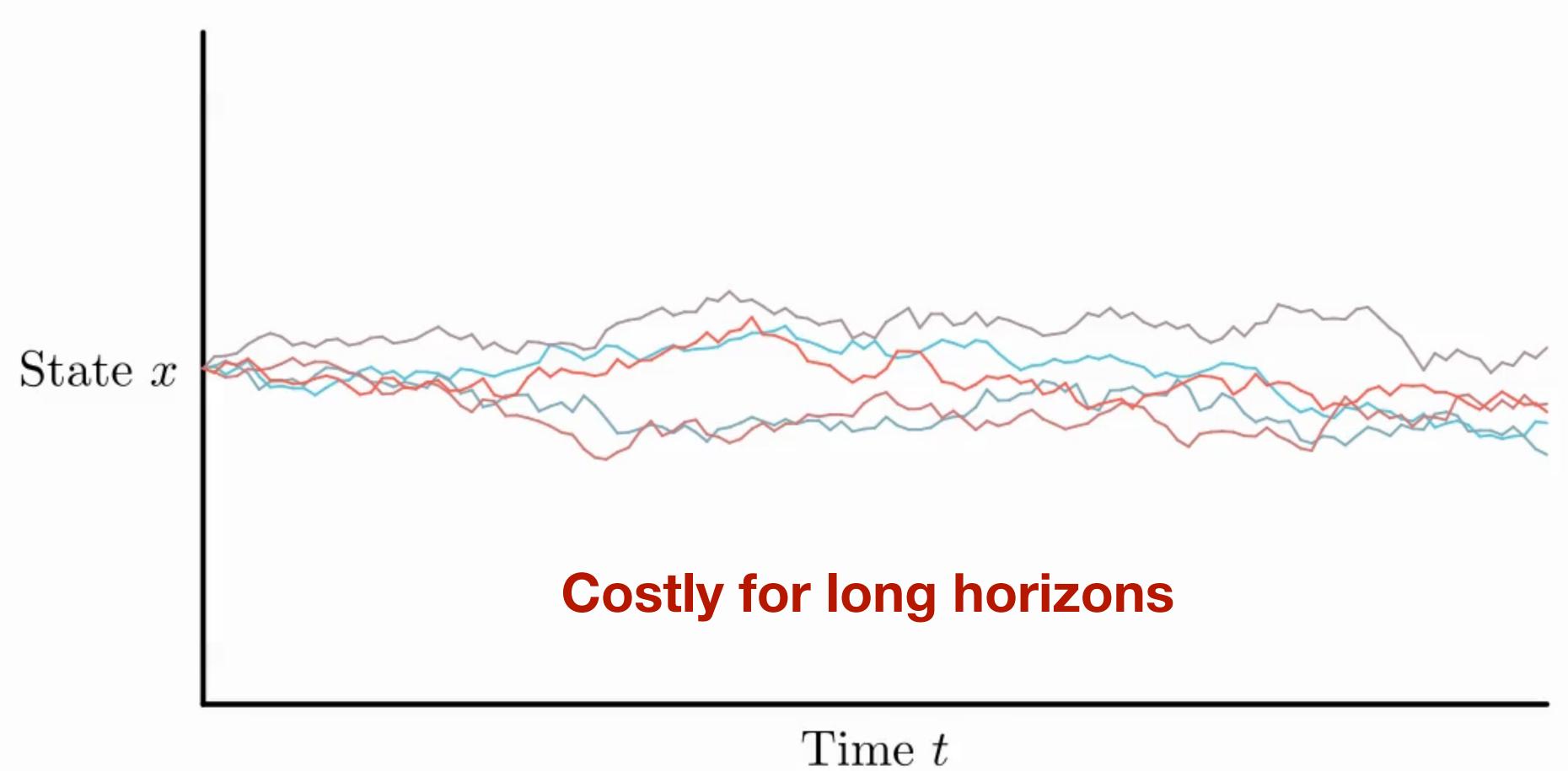












Strong Solution and Weak Solution of the SDEs

Itô SDE:
$$dx_t = \mu(x_t, t) dt + \sigma(x_t, t) dW_t$$
, $x_0 \sim p_0$

Strong solution

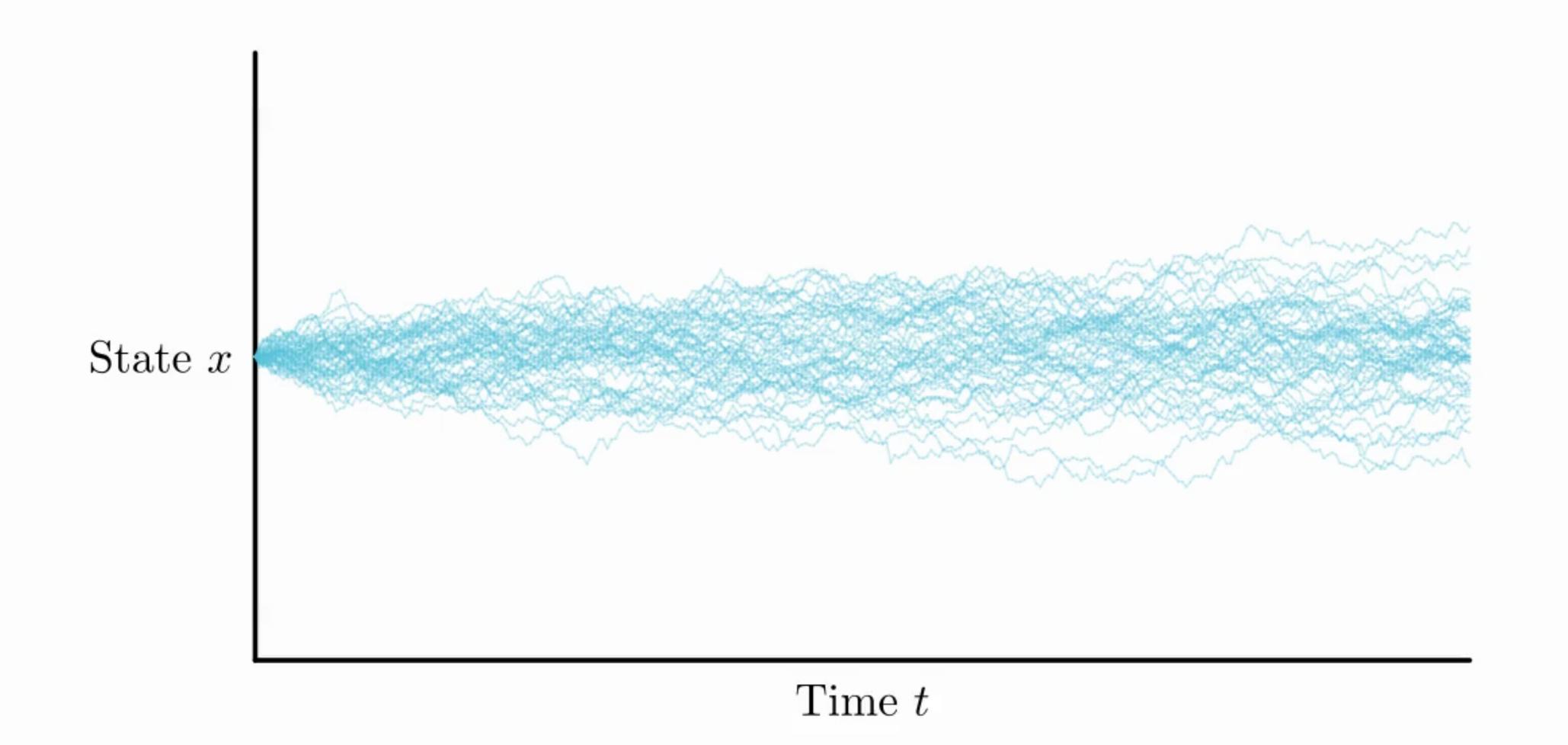
A solution x_t defined on a given probability space with a given Brownian motion. You do not change the noise; x_t must adapt to the fixed W_t .

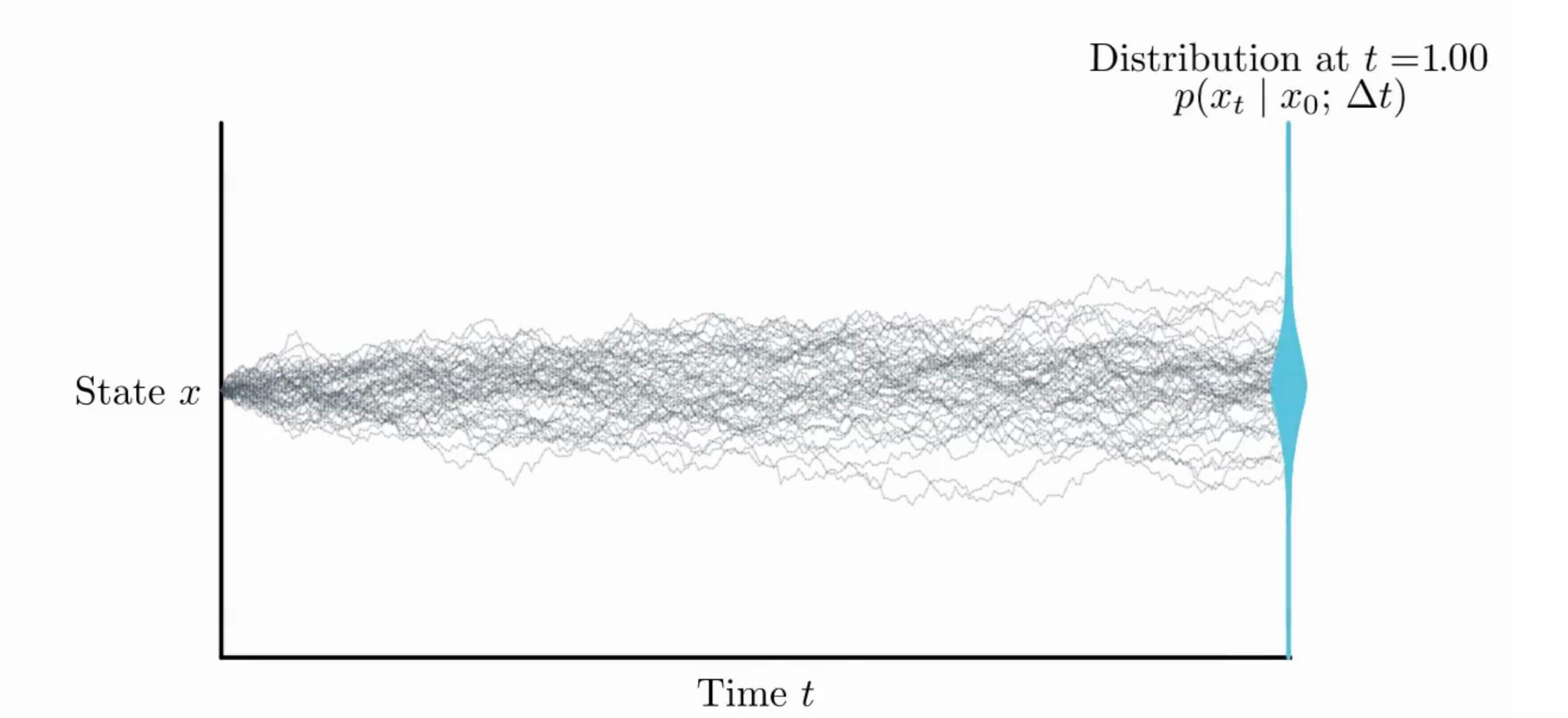
Neural SDE: model sample paths w.r.t. a fixed Brownian motion.

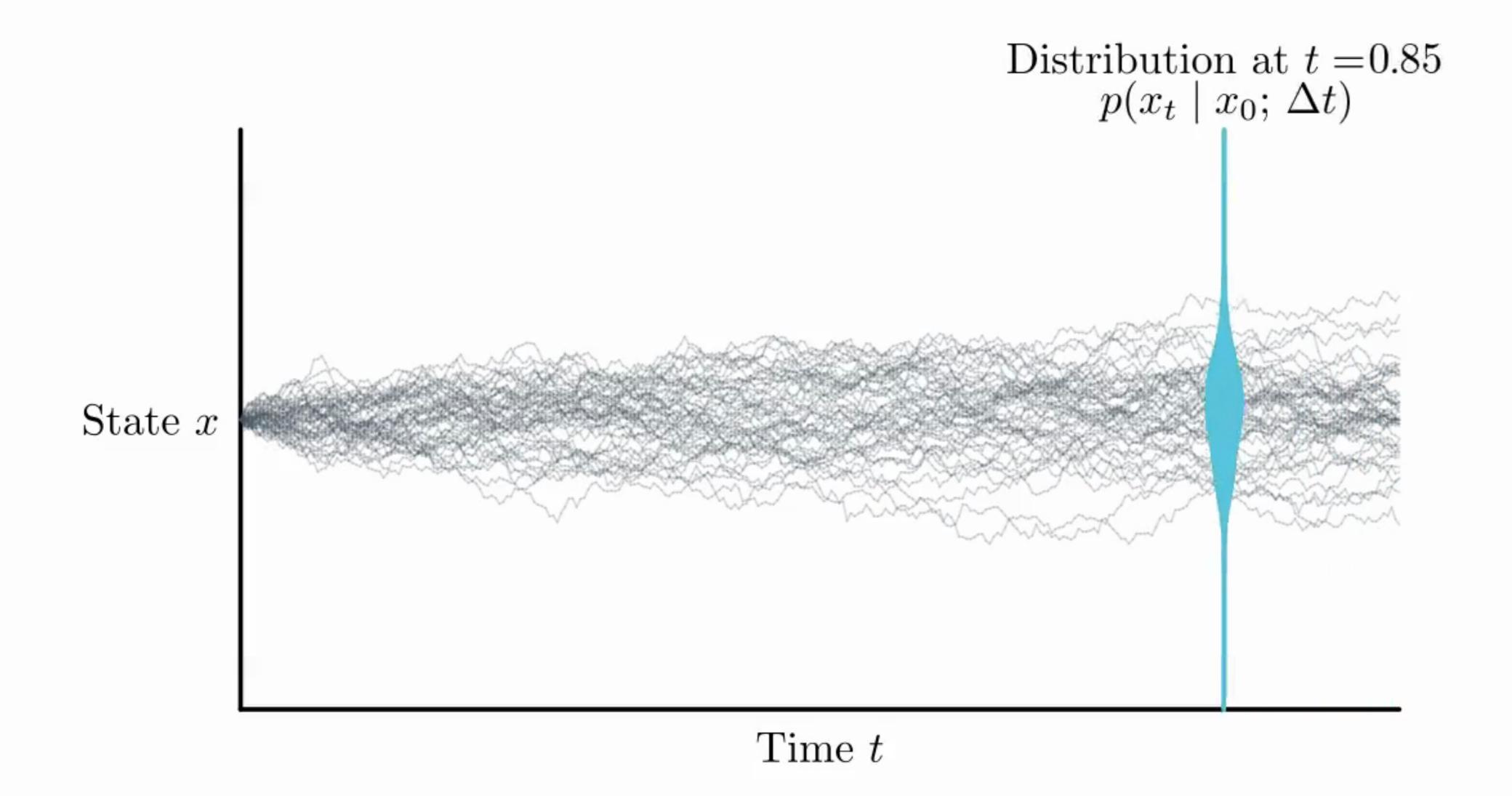
Weak solution

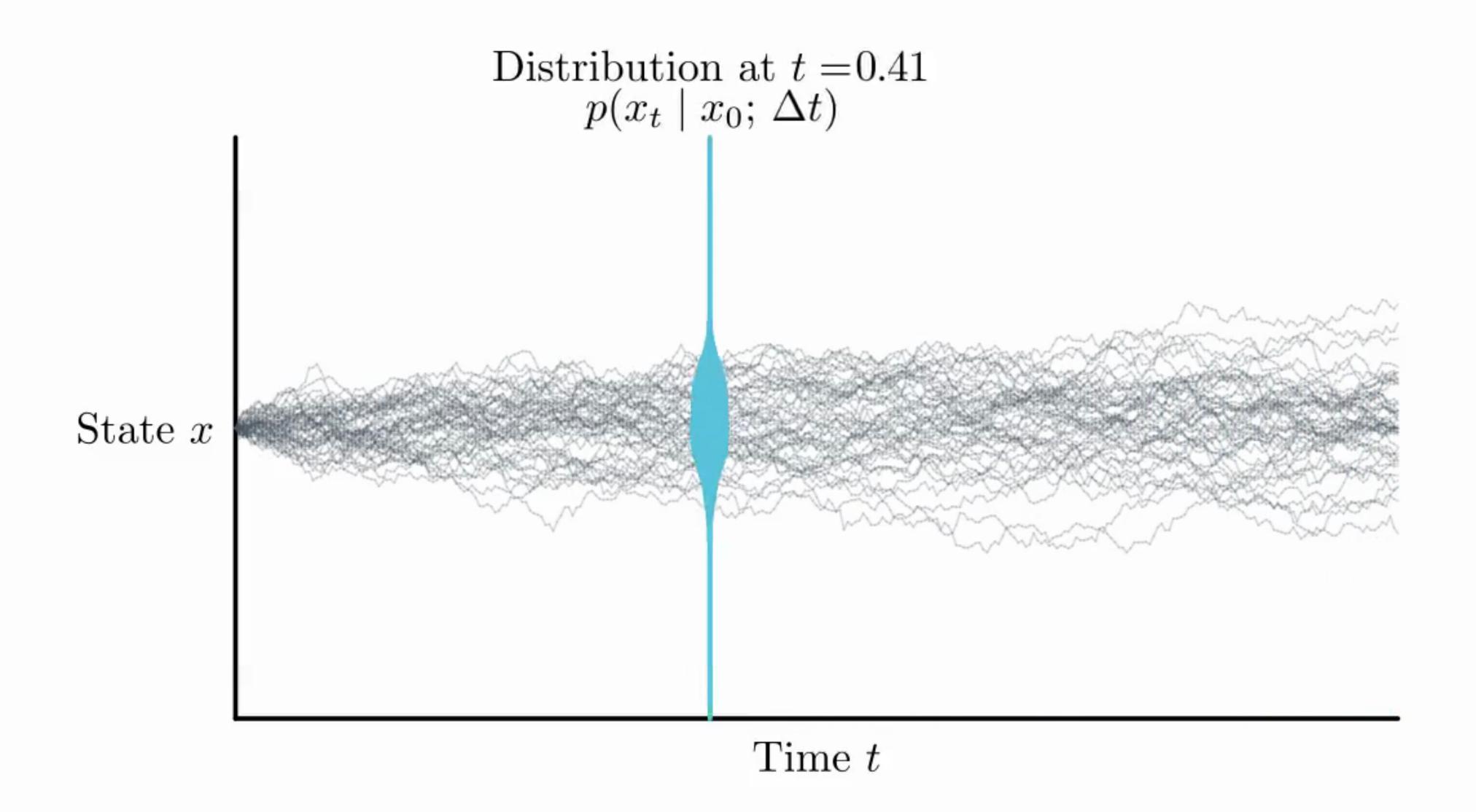
A solution x_t where the probability space and the Brownian motion are part of what you can choose. You only require that x_t and some Brownian motion satisfy the SDE and have the correct distribution.

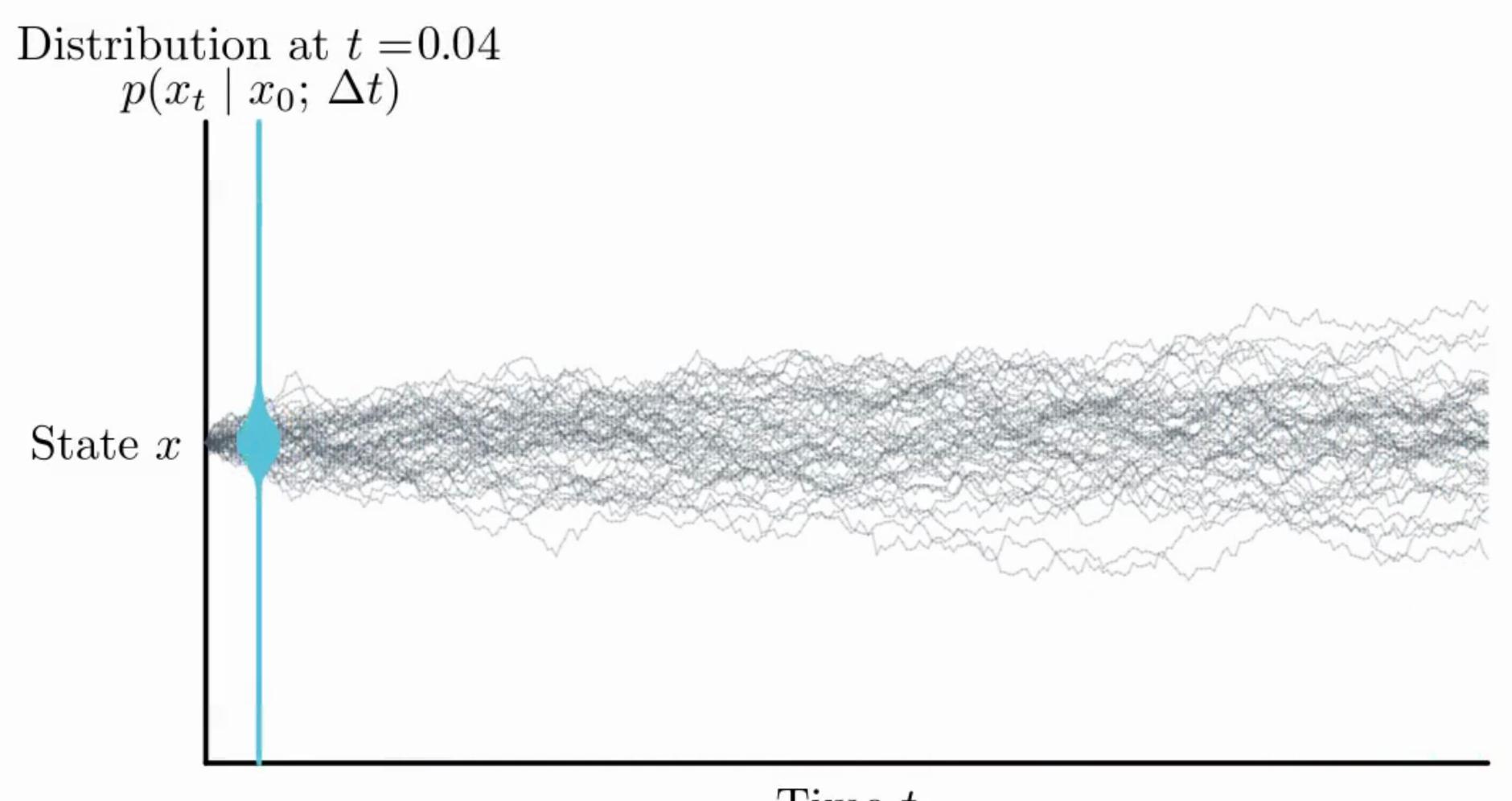
• Our idea: SDE as a Markov model—characterised by the transition law $p(x_t \mid x_s)$.

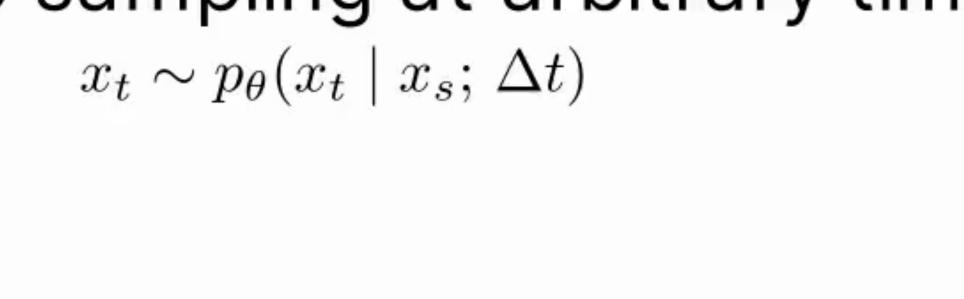




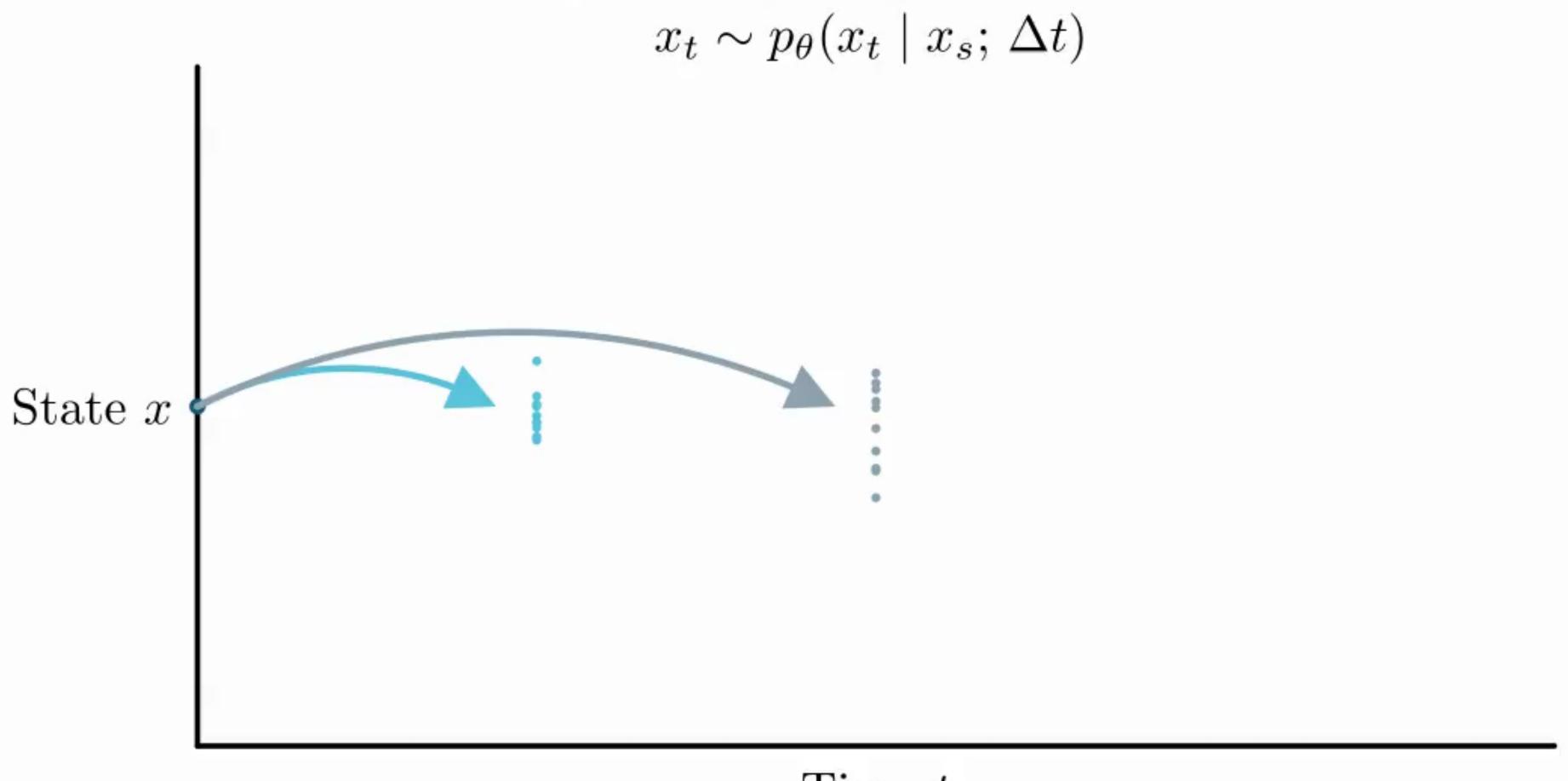


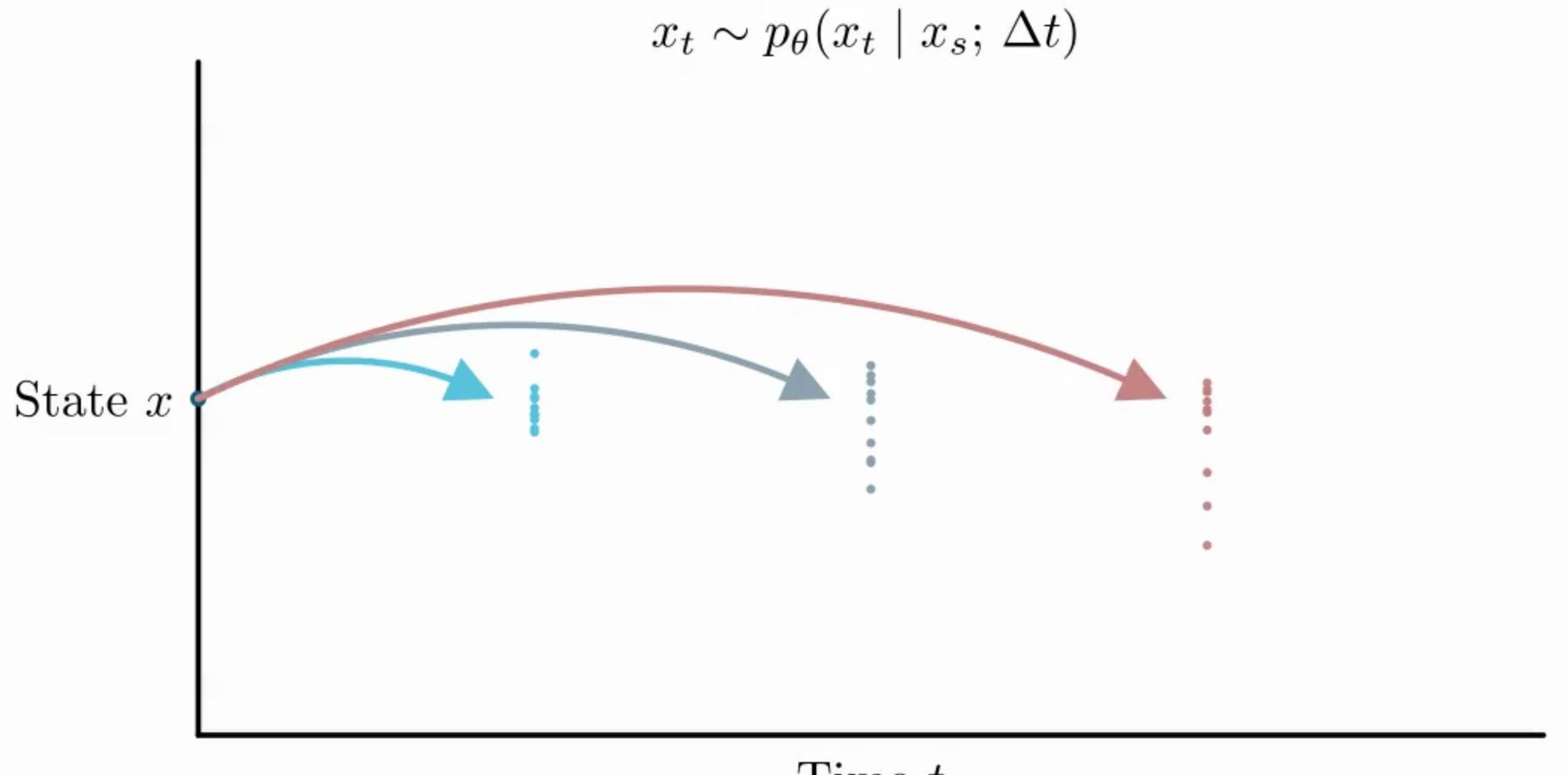


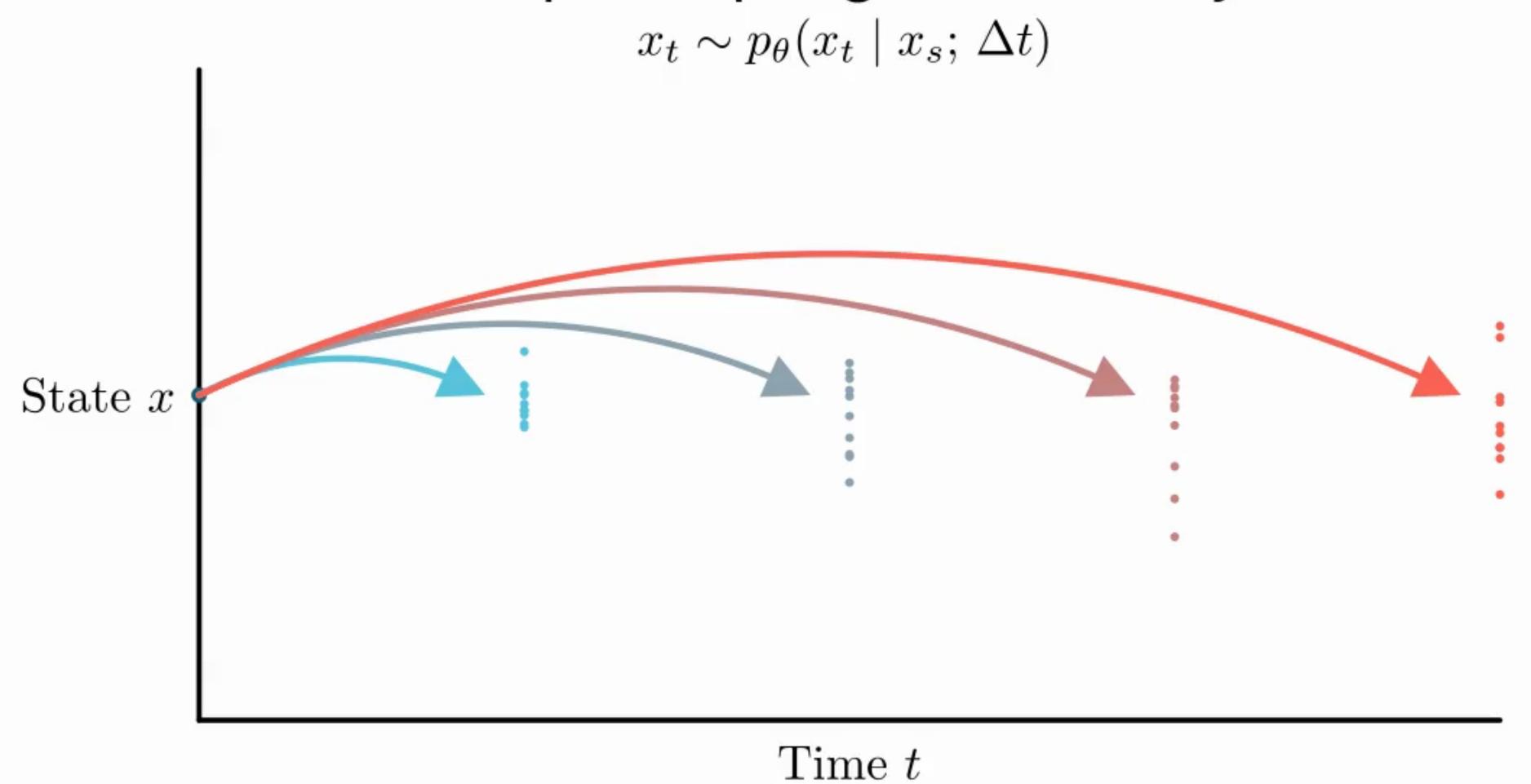




Time t







Mathematical Requirements for the Transition Kernel

Properties of $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, \Delta t = t - s)$

1. Independence.

For any $0 \le t_1 \le \cdots \le t_n$, $p_{\theta}(\boldsymbol{x}_{t_{k+1}} \mid \boldsymbol{x}_{t_k}; t_k, t_{k+1} - t_k)$ are independent.

2. Identity.

When
$$t = s$$
, $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, 0) = \delta(\boldsymbol{x}_t - \boldsymbol{x}_s)$

3. Flow property.

For any
$$0 \le t_i \le t_j \le t_k$$
, $p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_i}; t_i, t_k - t_i) = \int p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_j}; t_j, t_k - t_j) p_{\theta}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}; t_i, t_j - t_i) d\boldsymbol{x}_{t_j}$

4. Stationarity (for autonomous SDEs).

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_s; t_i, t_j - t_i) = p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j+r} \mid \boldsymbol{x}_s; t_i + r, t_j - t_i)$$

Mathematical Requirements for the Transition Kernel

Properties of $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, \Delta t = t - s)$

1. Independence. ✓ Realised by non-overlapping sampling.

For any
$$0 \le t_1 \le \cdots \le t_n$$
, $p_{\theta}(\boldsymbol{x}_{t_{k+1}} \mid \boldsymbol{x}_{t_k}; t_k, t_{k+1} - t_k)$ are independent.

2. Identity.

When
$$t = s$$
, $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, 0) = \delta(\boldsymbol{x}_t - \boldsymbol{x}_s)$

3. Flow property.

For any
$$0 \le t_i \le t_j \le t_k$$
, $p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_i}; t_i, t_k - t_i) = \int p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_j}; t_j, t_k - t_j) p_{\theta}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}; t_i, t_j - t_i) d\boldsymbol{x}_{t_j}$

4. Stationarity (for autonomous SDEs).

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_s; t_i, t_j - t_i) = p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j+r} \mid \boldsymbol{x}_s; t_i + r, t_j - t_i)$$

Architectural Design

Conditional normalising flow for $p_{\theta}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}; t_i, \Delta t)$

Base distribution

Using conditioning $oldsymbol{c} := (oldsymbol{x}_{t_i}, \Delta t, t_i)$,

$$z = x_{t_i} + \Delta t \cdot \text{MLP}_{\mu}(c; \theta_{\mu}) + \sqrt{\Delta t} \cdot \text{MLP}_{\sigma}(c; \theta_{\sigma}) \odot \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I)$$

Conditional affine coupling layers [4, 13, 28]

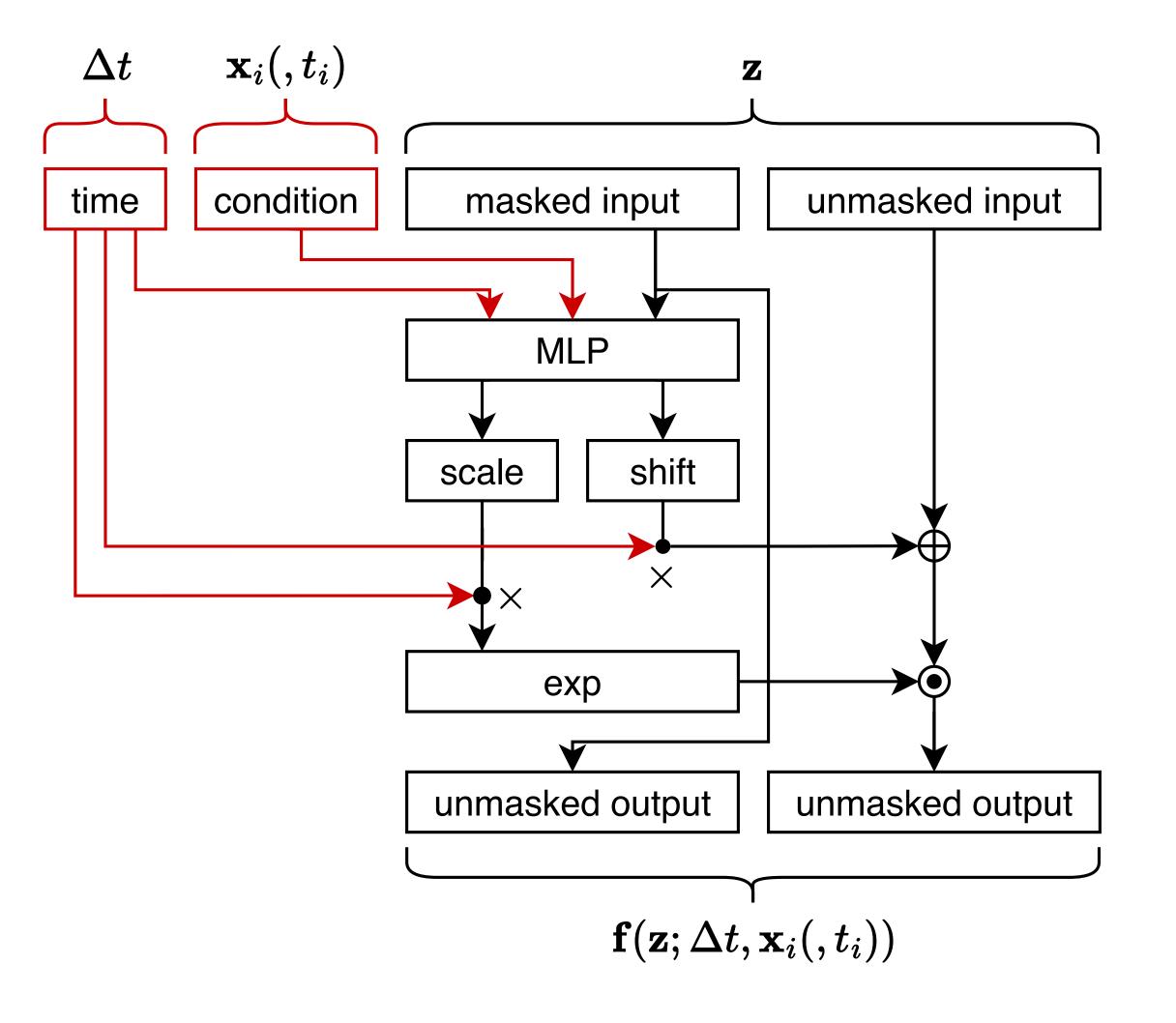
$$\boldsymbol{x}_{t_j} = \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{c}) = \boldsymbol{f}_L(\cdot; \boldsymbol{c}, \boldsymbol{\theta}_L) \circ \boldsymbol{f}_{L-1}(\cdot; \boldsymbol{c}, \boldsymbol{\theta}_{L-1}) \circ \cdots \circ \boldsymbol{f}_1(\boldsymbol{z}; \boldsymbol{c}, \boldsymbol{\theta}_1)$$

With $z_A, z_B = \mathrm{Split}(z)$, each layer f is designed as:

$$\operatorname{Concat}\left(\boldsymbol{z}_{\mathrm{A}},\boldsymbol{z}_{\mathrm{B}}\odot\exp\left(\Delta t\,\operatorname{MLP}_{\mathrm{scale}}^{(i)}(\boldsymbol{z}_{\mathrm{A}},\boldsymbol{c};\boldsymbol{\theta}_{\mathrm{scale}}^{(i)})\right) + \Delta t\,\operatorname{MLP}_{\mathrm{shift}}^{(i)}(\boldsymbol{z}_{\mathrm{A}},\boldsymbol{c};\boldsymbol{\theta}_{\mathrm{shift}}^{(i)})\right)$$

Architectural Design

Conditional affine coupling part for $p_{\theta}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}; t_i, \Delta t)$



Architectural Design

Conditional normalising flow for $p_{\theta}(x_{t_j} \mid x_{t_i}; t_i, \Delta t)$

Base distribution

Using conditioning $oldsymbol{c} := (oldsymbol{x}_{t_i}, \Delta t, t_i)$,

$$z = x_{t_i} + \Delta t \cdot \text{MLP}_{\mu}(c; \theta_{\mu}) + \sqrt{\Delta t} \cdot \text{MLP}_{\sigma}(c; \theta_{\sigma}) \odot \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I)$$

Conditional affine coupling layers [4, 13, 28]

$$\boldsymbol{x}_{t_j} = \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{c}) = \boldsymbol{f}_L(\cdot; \boldsymbol{c}, \boldsymbol{\theta}_L) \circ \boldsymbol{f}_{L-1}(\cdot; \boldsymbol{c}, \boldsymbol{\theta}_{L-1}) \circ \cdots \circ \boldsymbol{f}_1(\boldsymbol{z}; \boldsymbol{c}, \boldsymbol{\theta}_1)$$

With $z_A, z_B = \mathrm{Split}(z)$, each layer f is designed as:

$$\operatorname{Concat}\left(\boldsymbol{z}_{\mathrm{A}},\boldsymbol{z}_{\mathrm{B}}\odot\exp\left(\Delta t\,\operatorname{MLP}_{\mathrm{scale}}^{(i)}(\boldsymbol{z}_{\mathrm{A}},\boldsymbol{c};\boldsymbol{\theta}_{\mathrm{scale}}^{(i)})\right) + \Delta t\,\operatorname{MLP}_{\mathrm{shift}}^{(i)}(\boldsymbol{z}_{\mathrm{A}},\boldsymbol{c};\boldsymbol{\theta}_{\mathrm{shift}}^{(i)})\right)$$

✓ Identity when $\Delta t = 0$. ✓ Stationary when we drop t_i from c.

Mathematical Requirements for the Transition Kernel

Properties of
$$p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, \Delta t = t - s)$$

1. Independence. ✓ Realised by non-overlapping sampling.

For any
$$0 \le t_1 \le \cdots \le t_n$$
, $p_{\theta}(\boldsymbol{x}_{t_{k+1}} \mid \boldsymbol{x}_{t_k}; t_k, t_{k+1} - t_k)$ are independent.

2. Identity. ✓ Realised by architecture.

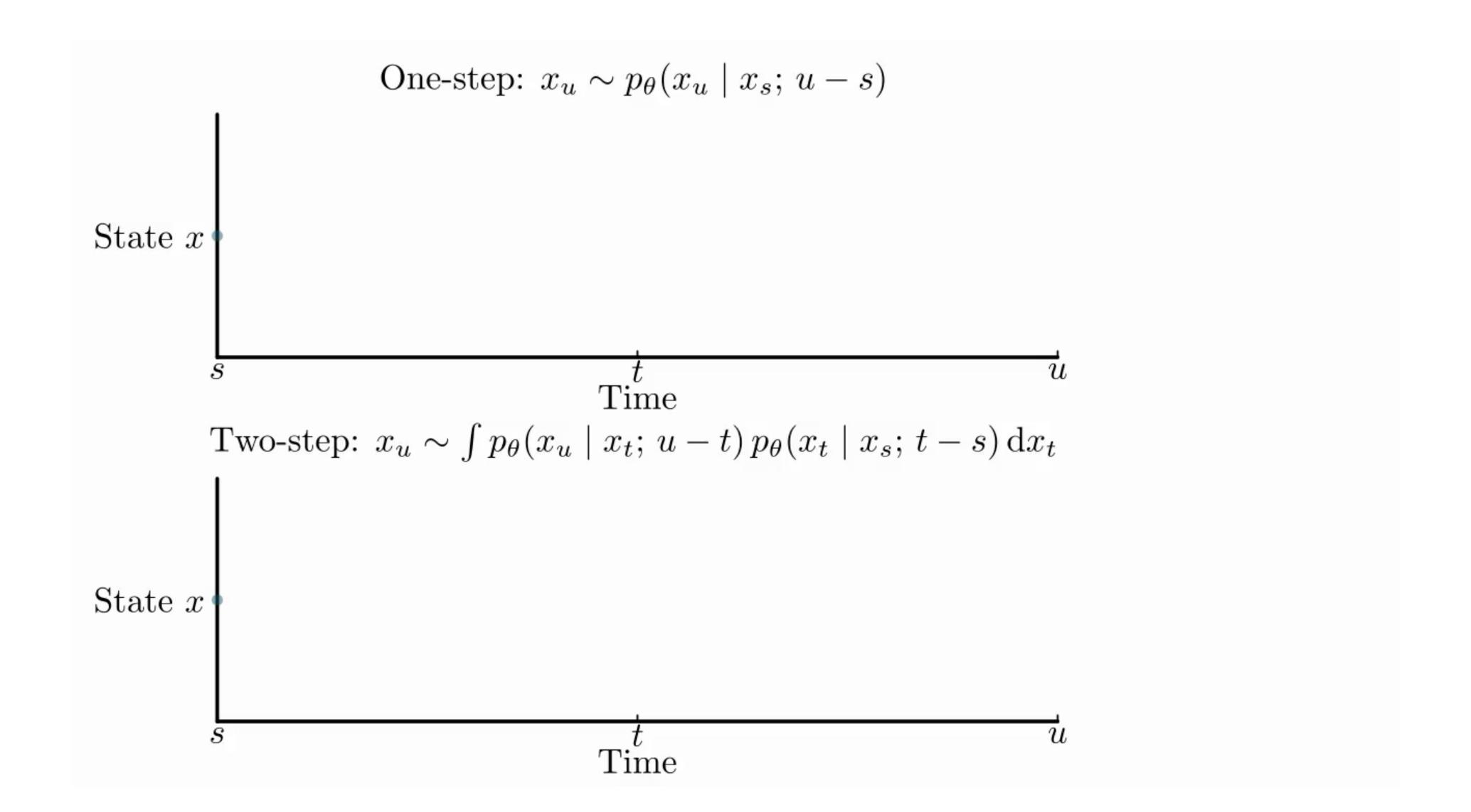
When
$$t = s$$
, $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, 0) = \delta(\boldsymbol{x}_t - \boldsymbol{x}_s)$

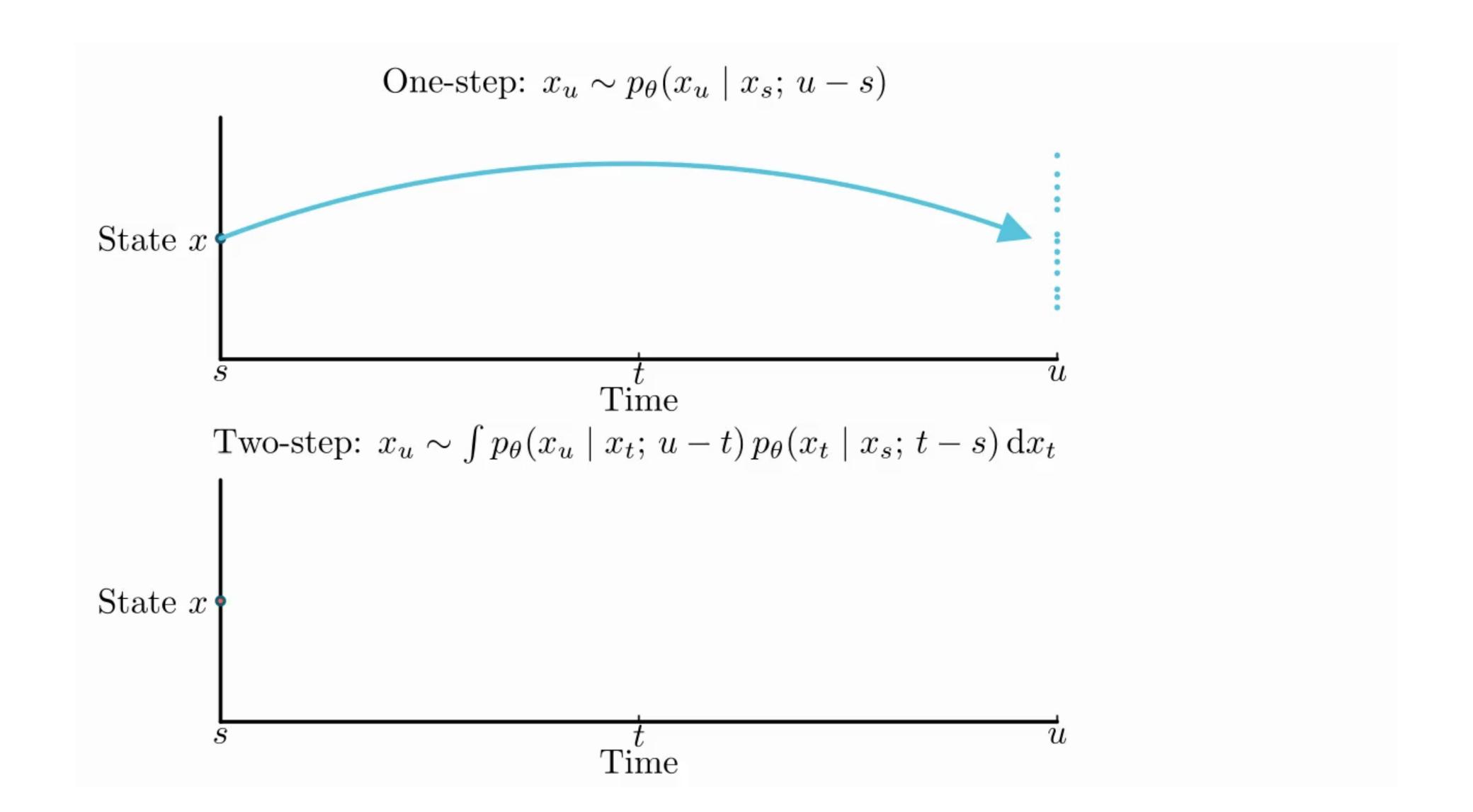
3. Flow property.

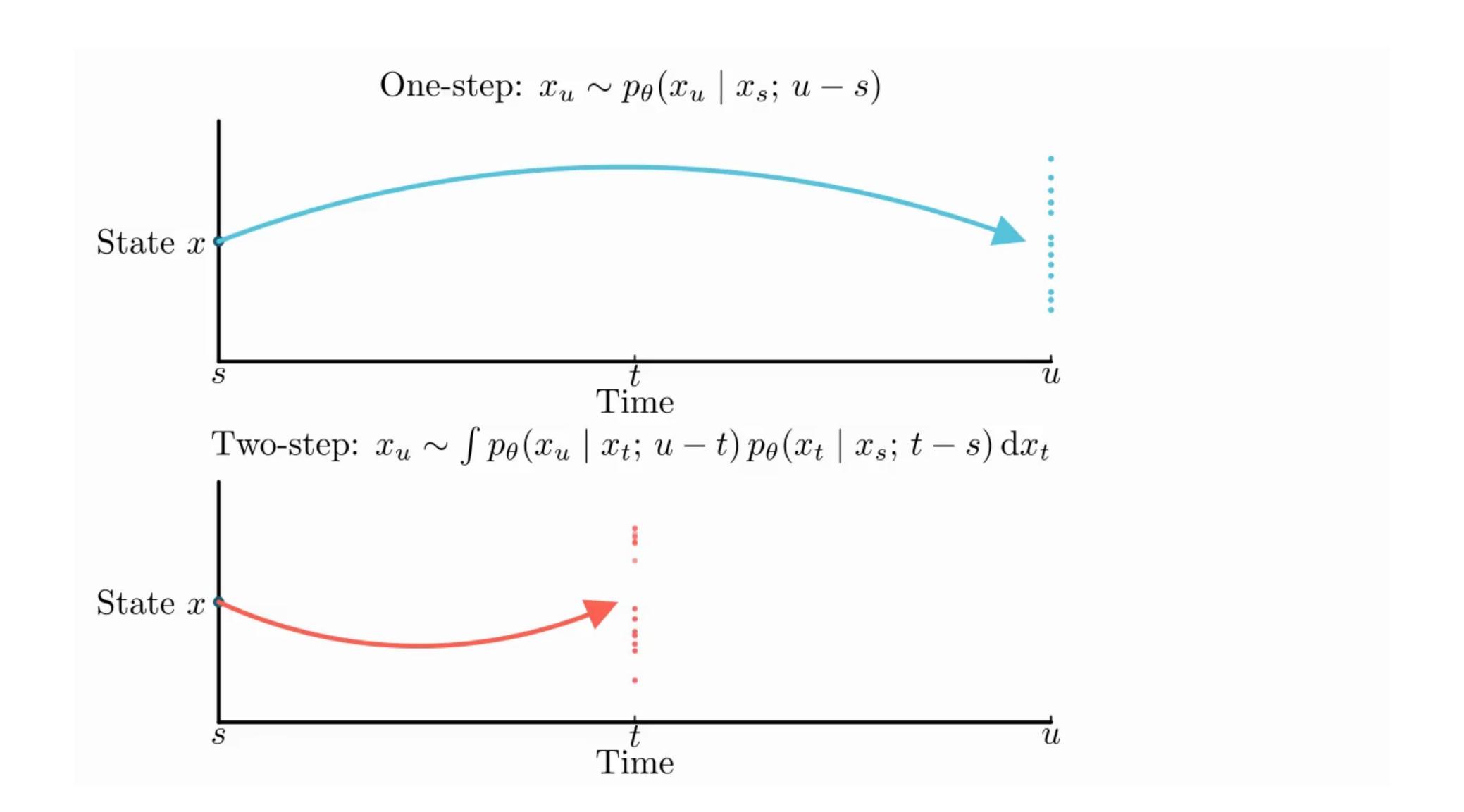
For any
$$0 \le t_i \le t_j \le t_k$$
, $p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_i}; t_i, t_k - t_i) = \int p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_j}; t_j, t_k - t_j) p_{\theta}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}; t_i, t_j - t_i) d\boldsymbol{x}_{t_j}$

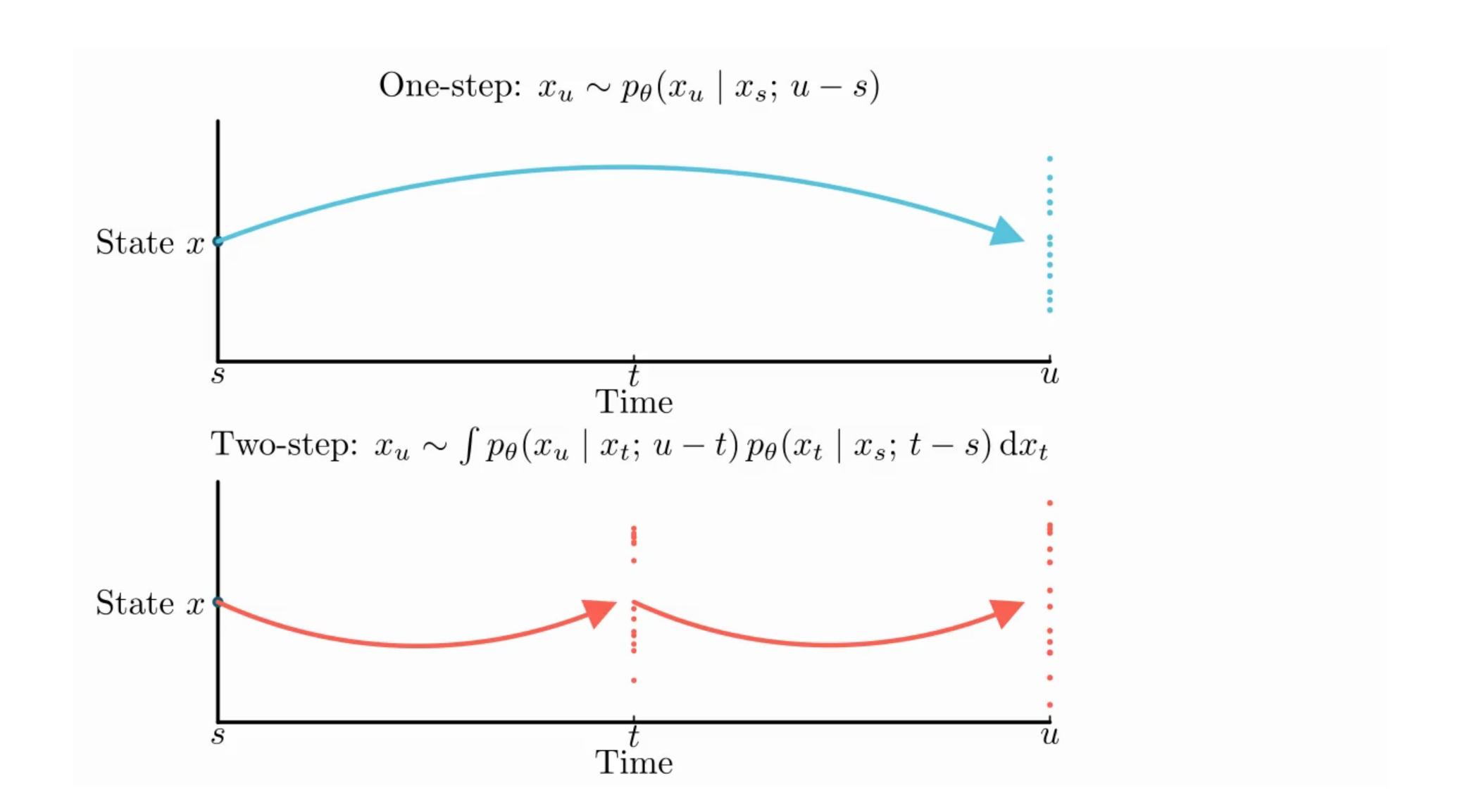
4. Stationarity (for autonomous SDEs). ✓ Realised by architecture optionally.

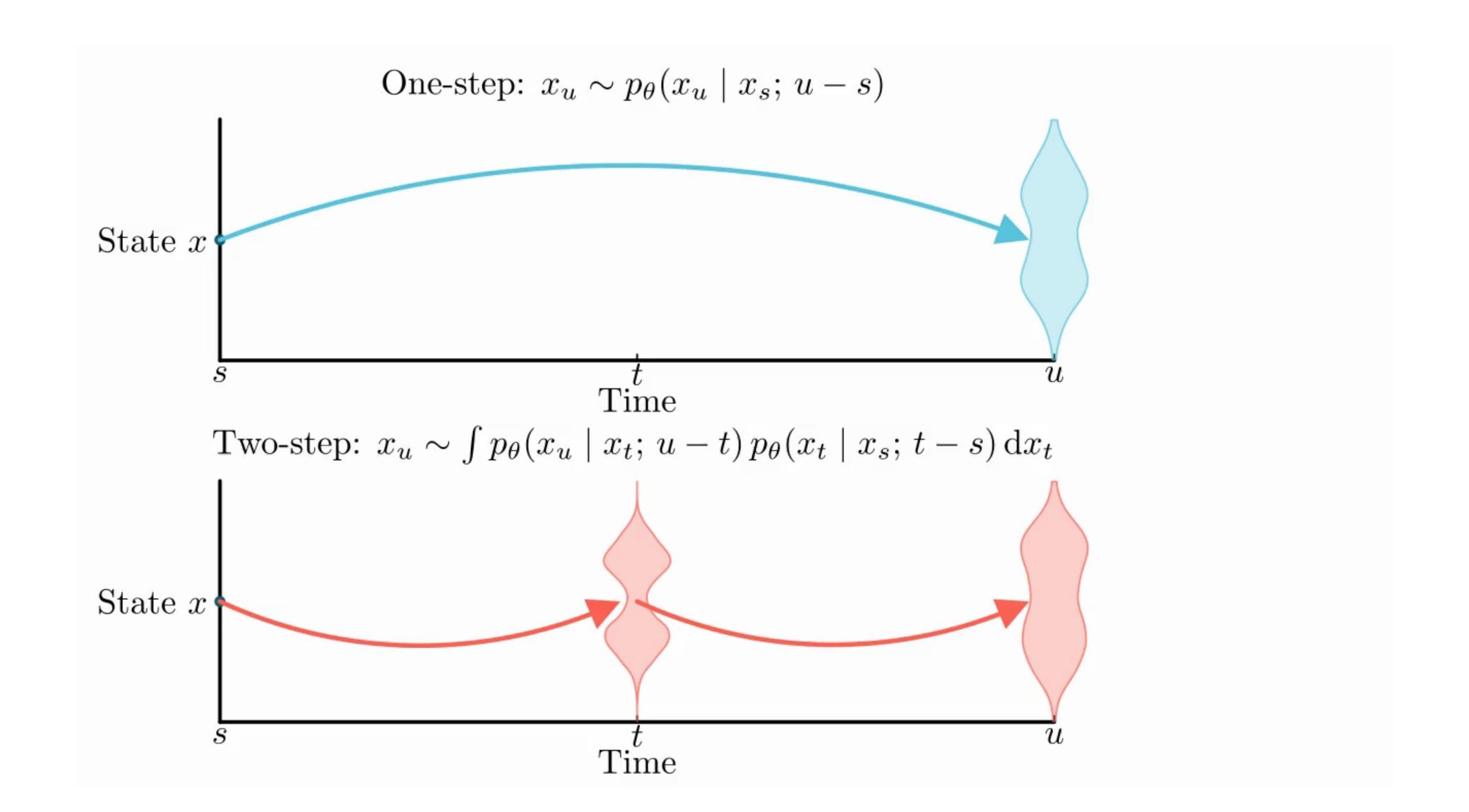
$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_s; t_i, t_j - t_i) = p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j+r} \mid \boldsymbol{x}_s; t_i + r, t_j - t_i)$$

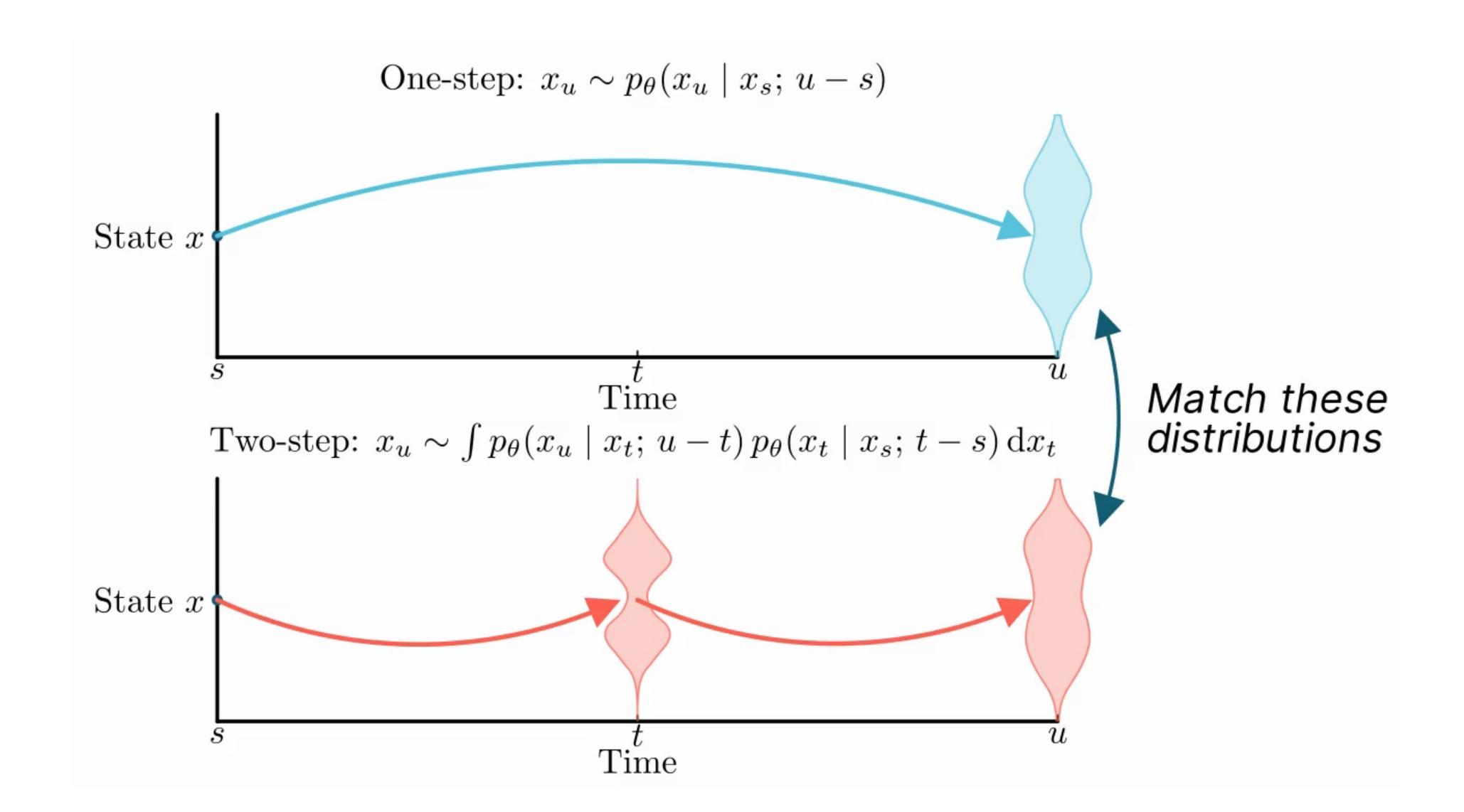












$$\mathcal{L}_{\text{flow}} = D\left[p_{\boldsymbol{\theta}}^{1}\left(\mathbf{x}_{t_{k}} \mid \mathbf{x}_{t_{i}}\right), \int p_{\boldsymbol{\theta}}^{2}\left(\mathbf{x}_{t_{k}} \mid \mathbf{x}_{t_{j}}\right) p_{\boldsymbol{\theta}}^{2}\left(\mathbf{x}_{t_{j}} \mid \mathbf{x}_{t_{i}}\right) d\mathbf{x}_{t_{j}}\right]$$

Challenges in computing the flow loss

- The marginalisation is generally intractable
 - → Direct access to the marginalised density is not available
- Naive Monte Carlo estimation would require many samples

We derive the upper bounds for KL divergences

Upper bounds for KL divergences

1-step → 2-step KL divergence

$$D_{\mathrm{KL}}\left(p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{i}}) \mid \int p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{j}}) p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{j}} \mid \boldsymbol{x}_{t_{i}}) d\boldsymbol{x}_{t_{j}}\right)$$

$$\leq \mathbb{E}_{\boldsymbol{x}_{t_{k}} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x}_{t_{i}})} \left[\mathbb{E}_{\boldsymbol{x}_{t_{j}} \sim b_{\boldsymbol{\xi}}(\cdot \mid \boldsymbol{x}_{t_{i}}, \boldsymbol{x}_{t_{k}})} \left[\log \left(\frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{i}}) b_{\boldsymbol{\xi}}(\boldsymbol{x}_{t_{j}} \mid \boldsymbol{x}_{t_{i}}, \boldsymbol{x}_{t_{k}})}{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{j}}) p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{j}} \mid \boldsymbol{x}_{t_{i}})}\right)\right]\right] =: \mathcal{L}_{\mathrm{flow}, \ 1-\text{to-2}}(\boldsymbol{\theta}, \boldsymbol{\xi}; t_{i}, t_{j}, t_{k}).$$

2-step → 1-step KL divergence

$$D_{\mathrm{KL}}\left(\int p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{j}}) p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{j}} \mid \boldsymbol{x}_{t_{i}}) d\boldsymbol{x}_{t_{j}} \| p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{i}})\right)$$

$$\leq \mathbb{E}_{\boldsymbol{x}_{t_{j}} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x}_{t_{i}})} \left[\mathbb{E}_{\boldsymbol{x}_{t_{k}} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x}_{t_{j}})} \left[\log \left(\frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{j}} \mid \boldsymbol{x}_{t_{i}}) p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{j}})}{b_{\boldsymbol{\xi}}(\boldsymbol{x}_{t_{j}} \mid \boldsymbol{x}_{t_{i}}, \boldsymbol{x}_{t_{k}}) p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_{k}} \mid \boldsymbol{x}_{t_{i}})}\right)\right]\right] =: \mathcal{L}_{\mathrm{flow}, 2\text{-to-1}}(\boldsymbol{\theta}, \boldsymbol{\xi}; t_{i}, t_{j}, t_{k}).$$

$$\mathcal{L}_{\text{flow}}(\boldsymbol{\theta}, \boldsymbol{\xi}) := \underset{p(t_i, t_j, t_k)}{\mathbb{E}} \left[\mathcal{L}_{\text{flow}, 1-\text{to-}2}(\boldsymbol{\theta}, \boldsymbol{\xi}; t_i, t_j, t_k) + \mathcal{L}_{\text{flow}, 2-\text{to-}1}(\boldsymbol{\theta}, \boldsymbol{\xi}; t_i, t_j, t_k) \right]$$

Mathematical Requirements for the Transition Kernel

Properties of $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, \Delta t = t - s)$

1. Independence. ✓ Realised by non-overlapping sampling.

For any
$$0 \le t_1 \le \cdots \le t_n$$
, $p_{\theta}(\boldsymbol{x}_{t_{k+1}} \mid \boldsymbol{x}_{t_k}; t_k, t_{k+1} - t_k)$ are independent.

2. Identity. ✓ Realised by architecture.

When
$$t = s$$
, $p_{\theta}(\boldsymbol{x}_t \mid \boldsymbol{x}_s; s, 0) = \delta(\boldsymbol{x}_t - \boldsymbol{x}_s)$

3. Flow property. ✓ Approximately realised by flow loss.

For any
$$0 \le t_i \le t_j \le t_k$$
, $p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_i}; t_i, t_k - t_i) = \int p_{\theta}(\boldsymbol{x}_{t_k} \mid \boldsymbol{x}_{t_j}; t_j, t_k - t_j) p_{\theta}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}; t_i, t_j - t_i) d\boldsymbol{x}_{t_j}$

4. Stationarity (for autonomous SDEs). ✓ Realised by architecture optionally.

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_s; t_i, t_j - t_i) = p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j+r} \mid \boldsymbol{x}_s; t_i + r, t_j - t_i)$$

Training Objective

$$\mathcal{L} = \underset{\boldsymbol{x}_{t_j}, \boldsymbol{x}_{t_i} \sim \mathcal{D}}{\mathbb{E}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t_j} \mid \boldsymbol{x}_{t_i}) \right] + \lambda \mathcal{L}_{\text{flow}}(\boldsymbol{\theta}, \boldsymbol{\xi})$$

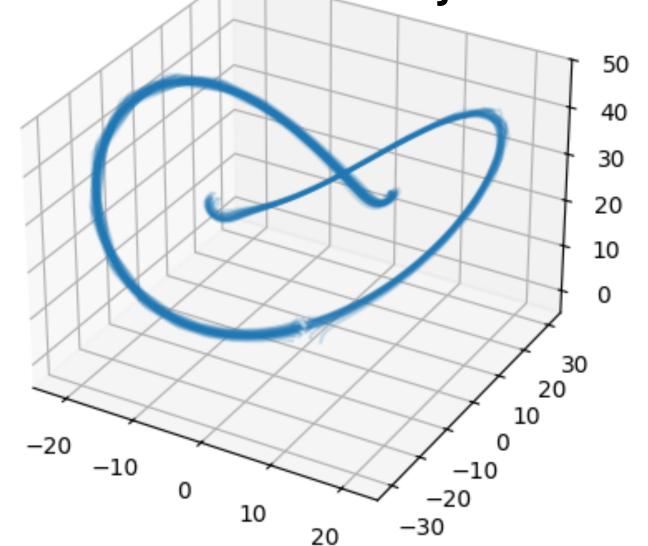
Negative log likelihood

Flow loss

Experimental Configurations

Chaotic dynamics—Stochastic Lorenz Attractor

Ground truth trajectories



$$dx = \sigma(y - x)dt + \alpha_x dW_1$$

$$dy = (x(\rho - z) - y)dt + \alpha_y dW_2$$

$$dz = (xy - \beta z)dt + \alpha_z dW_3$$

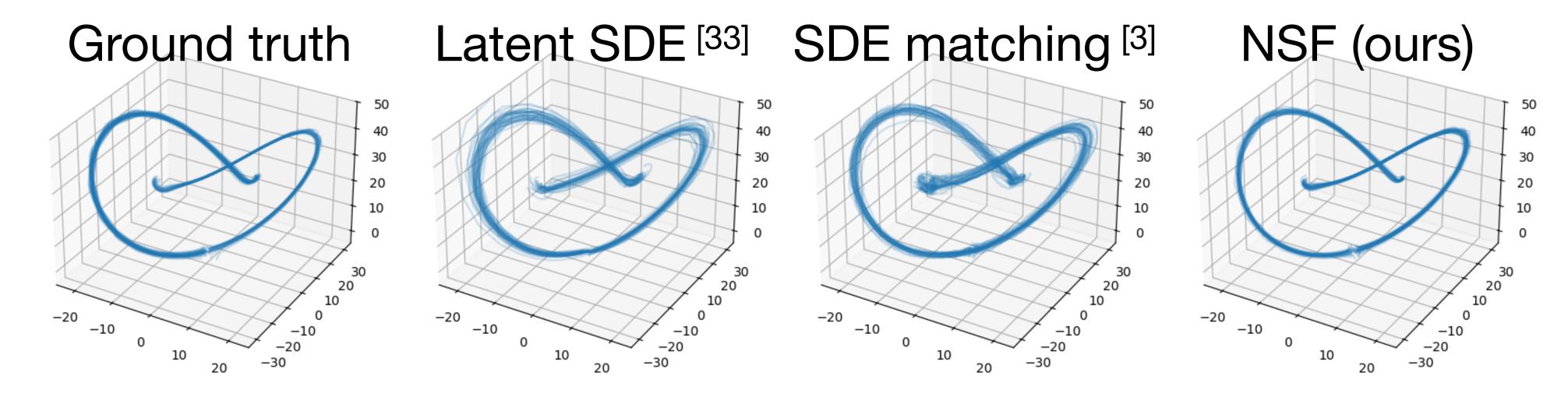
$$\sigma = 10, \rho = 28, \beta = 8/3, \alpha = (0.15, 0.15, 0.15)$$

Initial state:
$$\mathcal{N}(0, I)$$
; Duration: $t \in [0, 1]$

Trained on 1,024 trajectories, tested on 1,024 trajectories.

Experimental Results

With a comparable network size



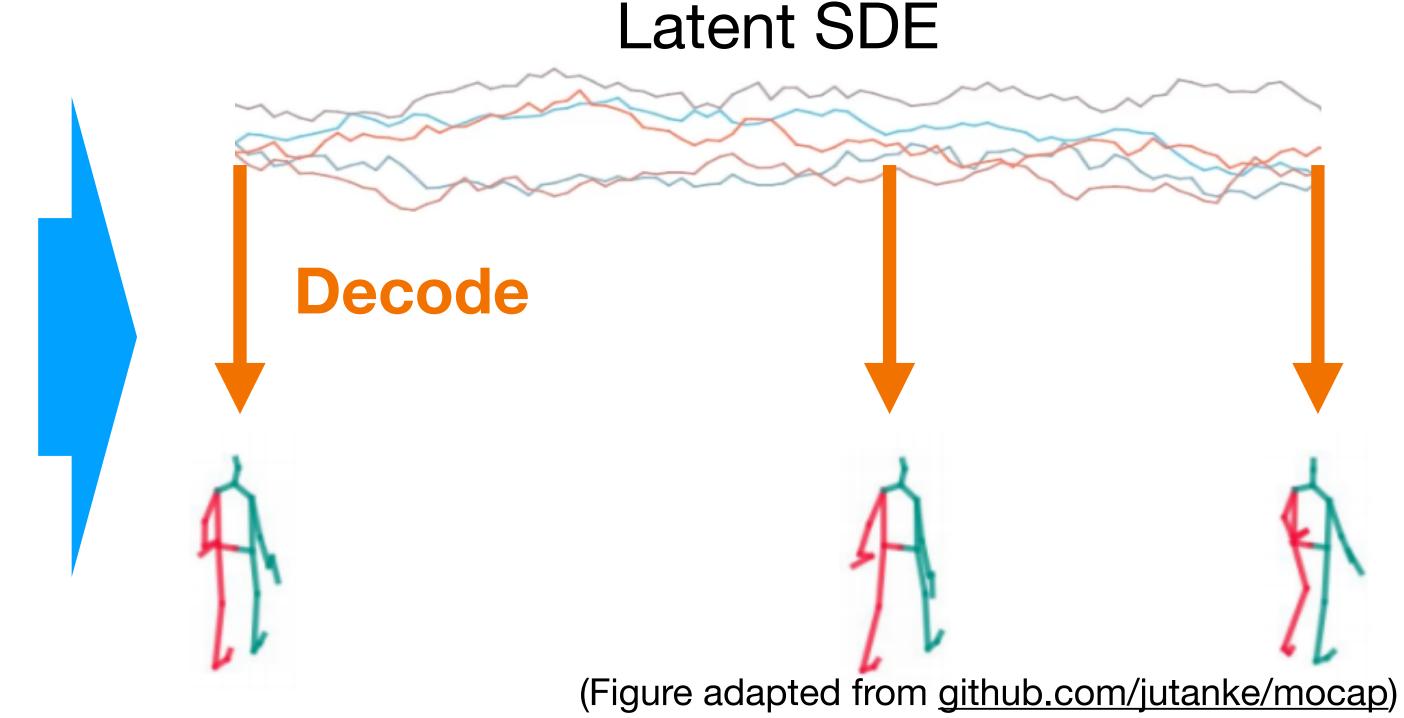
Method	t = 0.25		t = 0.5		t = 0.75		t = 1.0	
	KL ↓	kFLOPs ↓	KL ↓	kFLOPs ↓	KL ↓	kFLOPs ↓	KL ↓	kFLOPs ↓
Latent SDE [33]	2.1 ± 0.9	959	1.8 ± 0.1	1,917	0.9 ± 0.3	2,839	1.5 ± 0.5	3,760
SDE matching [3]	6.3 ± 0.4	1,917	11.7 ± 0.5	3,834	7.9 ± 0.3	5,677	6.0 ± 0.3	7,520
NSF (ours)	0.8 ± 0.7	53	1.3 ± 0.1	53	0.6 ± 0.3	53	0.2 ± 0.6	53

Latent SDEs and Latent Neural Stochastic Flows

Extension for partially-observed/high-dimensional data

Real-world time-series data is often:

- Partially-observed
- Irregularly-sampled
- High-dimensional



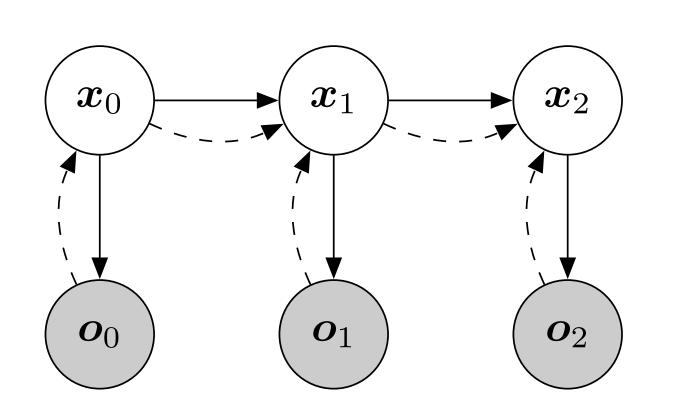
Latent SDEs are powerful tools, but they require high computational costs.

We replace SDEs with Neural Stochastic Flows.

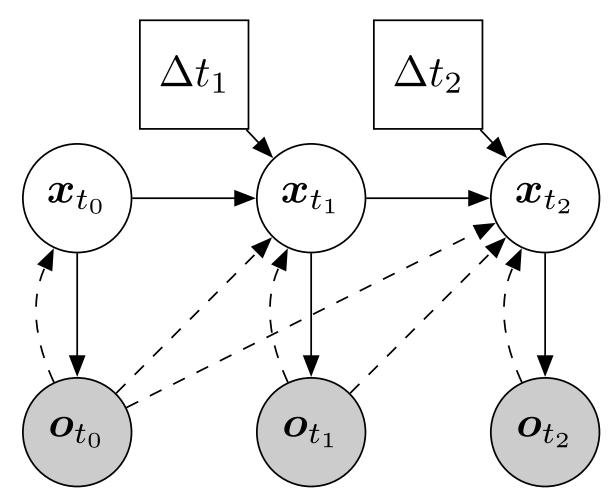
Latent Neural Stochastic Flows

Extension for partially-observed/high-dimensional data

Variational State Space Model [8, 21, 22, 31]



Latent NSF (ours)

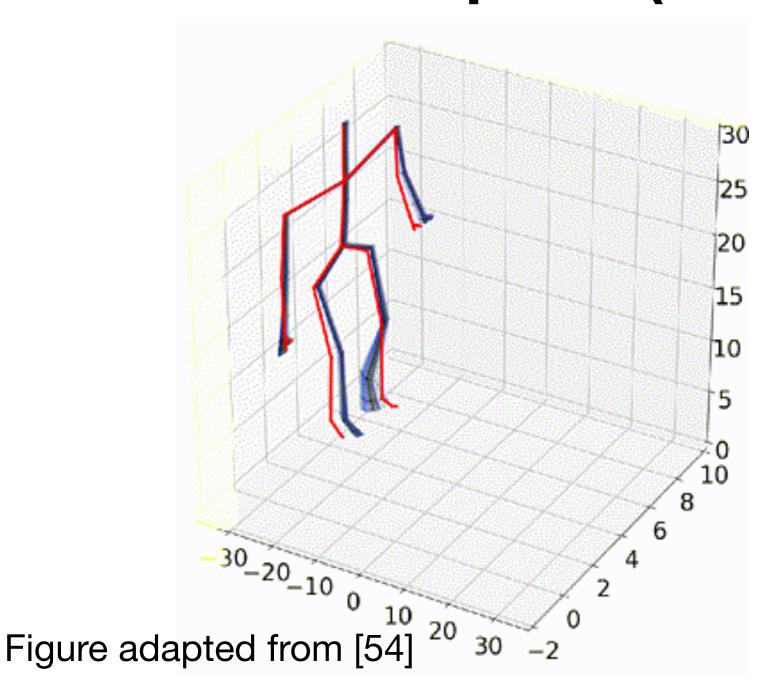


- A proven template for sequential modelling, including RL (PlaNet^[16], Dreamer, etc.)
- √ VSSM structure remains the same by NSF's closed-form log density
- **✓** One-step transition for arbitrary Δt

Experimental Results with Latent NSF

Real-world/high-dimensional sequential prediction

CMU Motion Capture (50-dims.)



Setup 1: The same length for train/test

Setup 2: Training length < Test length

Stochastic Moving MNIST (64x64 px)



Experimental Results with Latent NSF

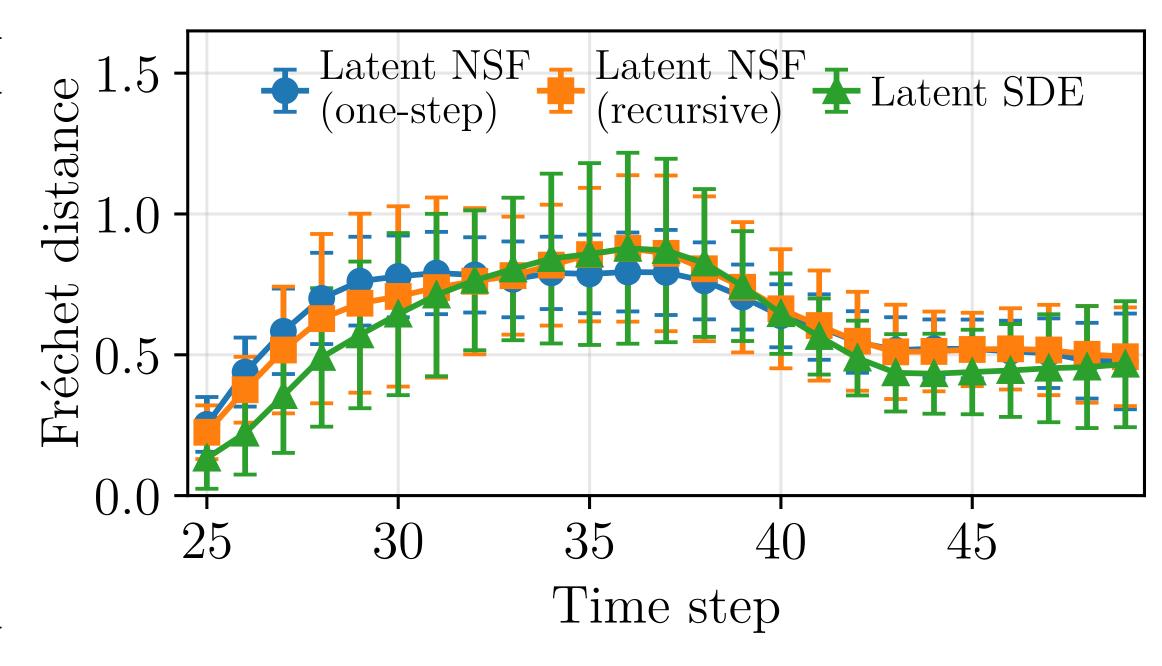
Real-world/high-dimensional sequential prediction

CMU Motion Capture (50-dims.)

Compared by mean square error

Methods	Setup 1	Setup 2
npODE [17]	22.96^{\dagger}	
Neural ODE [6]	$22.49 \pm 0.88^{\dagger}$	
ODE2VAE-KL [54]	$8.09 \pm 1.95^{\dagger}$	
Latent ODE [43]	$5.98 \pm 0.28^*$	31.62 ± 0.05 §
Latent SDE [33]	12.91 ± 2.90^{1}	$9.52 \pm 0.21^{\S}$
Latent Approx SDE [46]	$7.55 \pm 0.05^{\S}$	10.50 ± 0.86
ARCTA [9]	$7.62 \pm 0.93^{\ddagger}$	9.92 ± 1.82
NCDSSM [2]	$5.69 \pm 0.01^{\S}$	4.74 ± 0.01 §
SDE matching [3]	5.20 ± 0.43^2	4.26 ± 0.35
Latent NSF (ours)	8.62 ± 0.32	$\boldsymbol{3.41 \pm 0.27}$

Stochastic Moving MNIST (64x64 px)



- Best/tied-best performance
- ✓ Two orders of magnitude faster

- Comparable performance
- ✓ 2x faster

Position of Our Work

Method(s)	Target dynamics	Solver-free training	Solver-free inference
Neural ODEs [6]	General ODEs	X	X
Neural flows [4]	General ODEs		
Score-based diffusion via reverse SDEs/PF-ODEs [47]; flow matching [34]	Pre-defined diffusion SDEs/ ODEs	√	X
Progressive distillation [44]	Pre-defined diffusion SDEs/ ODEs	X	
Consistency models [26, 48]; rectified flows [35]	Pre-defined diffusion SDEs/ ODEs		√
Neural (latent) SDEs [25, 33, 38, 46, 50]	General Itô SDEs	X	X
ARCTA [9]; SDE matching [3]	General Itô SDEs		X
Neural Stochastic Flows (ours)	General Itô SDEs	√	

Summary

- We proposed Neural Stochastic Flows, which enable solver-free in both training and inference, with closed-form log-densities.
- Extended to Latent NSF: a variational state-space model using NSF as the latent transition for partially-observed/highdimensional data.

Key Benefits:

- One-step prediction for arbitrary time gaps.
- Speed: up to two orders of magnitude faster.
- Stable training with tractable densities.

Limitations:

- Chapman–Kolmogorov relation is enforced approximately.
- Affine-coupling design constrains expressivity.

Project page

Paper

&

Refs.

