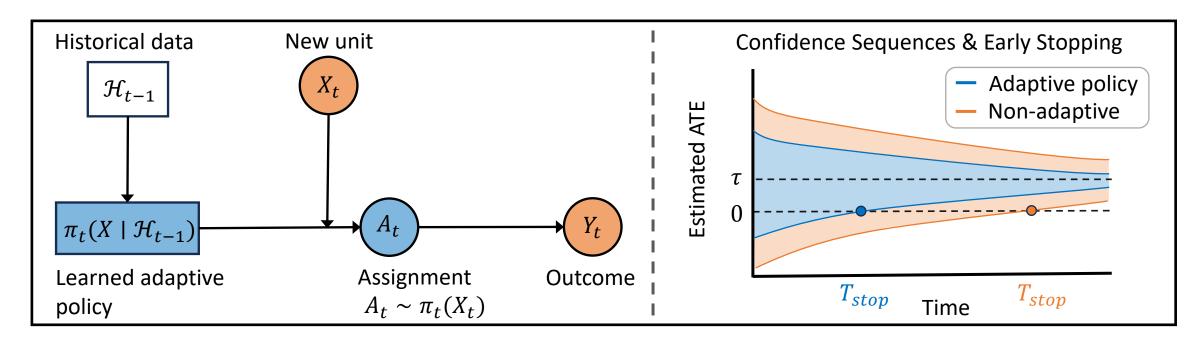


Efficient Adaptive Experimentation with Noncompliance

Miruna Oprescu, Brian M Cho, Nathan Kallus

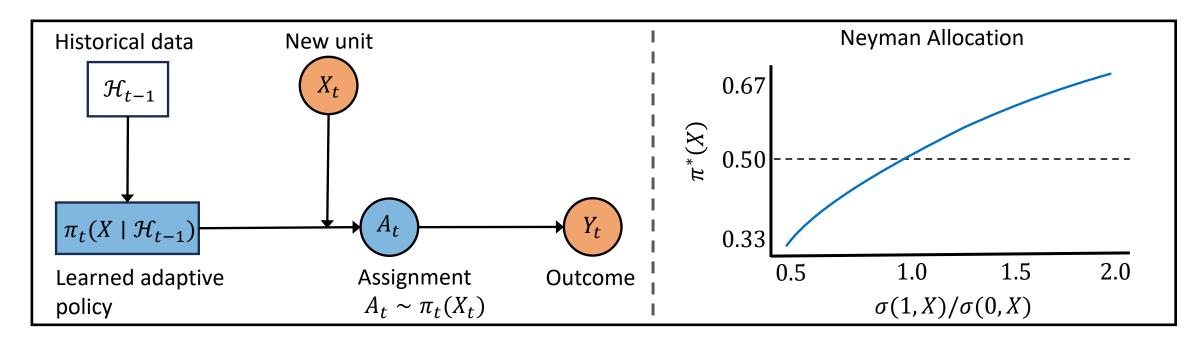
Cornell University, Cornell Tech

Efficient Adaptive Experiments with Direct Treatments



- **Setting:** Binary treatment $A \in \{0, 1\}$ with covariates X; online experiment: observe X_t , assign A_t and observe outcome Y_t each round.
- **Goal:** Learn an adaptive policy $\pi_t(X \mid \mathcal{H}_{t-1})$ at time t that minimizes the asymptotic variance of the ATE and provide and estimator that achieves it.
- Motivation: Enable reliable early stopping by driving faster variance reduction.

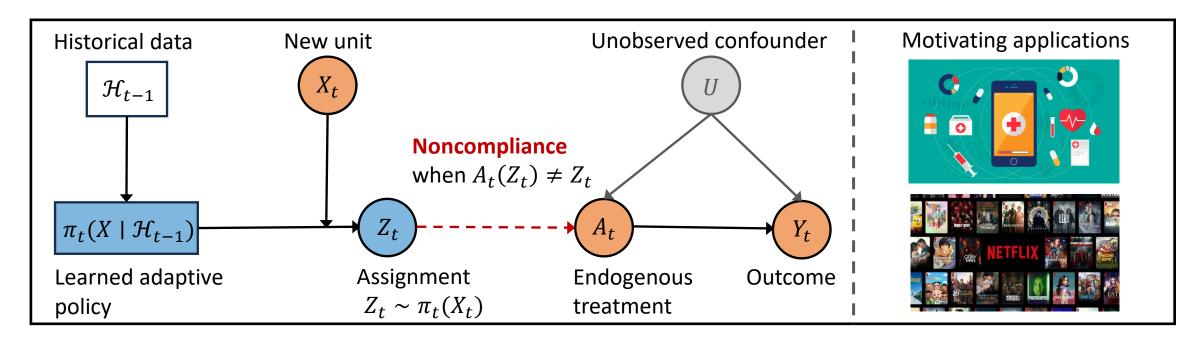
Efficient Adaptive Experiments with Direct Treatments



Classical Result: Neyman allocation — assign more where (conditional)
outcome variance is larger.

$$\pi^*(X) = \frac{\sqrt{\text{Var}(Y \mid A = 1, X)}}{\sqrt{\text{Var}(Y \mid A = 0, X)} + \sqrt{\text{Var}(Y \mid A = 1, X)}} := \frac{\sigma(1, X)}{\sigma(0, X) + \sigma(1, X)}$$

Noncompliance Efficient Adaptive Experiments with Direct Treatments



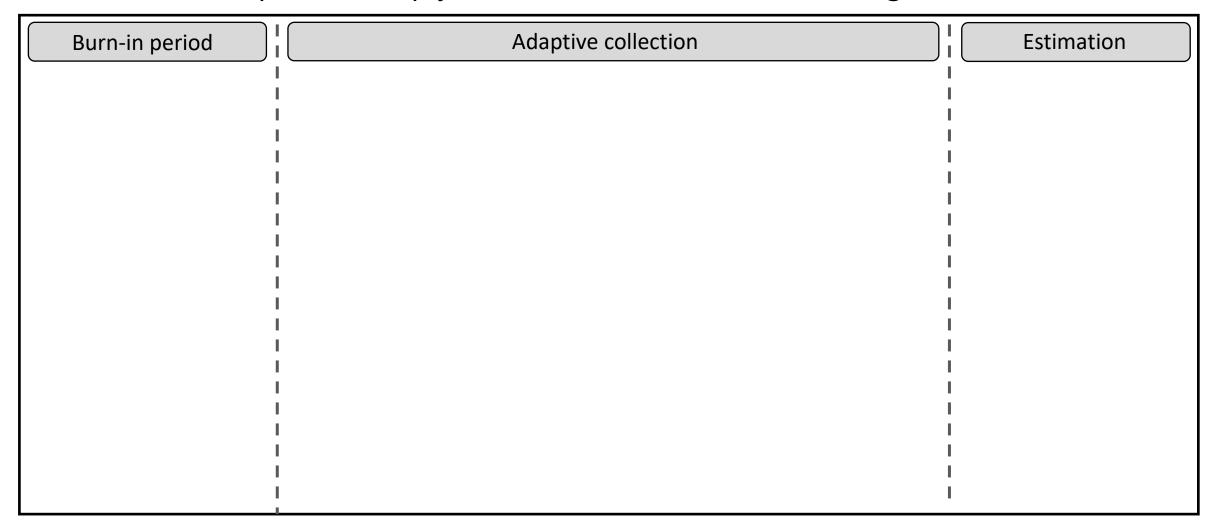
- Noncompliance: We can assign an encouragement (instrumental variable), but cannot enforce the treatment (e.g. ethical considerations, feasibility).
- **Issue:** A_t is *endogenous* (affected by unobserved confounding) \Rightarrow naive A/B on A_t is biased; only the instrumental variable Z_t is randomized.
- IV Fix: Use Z_t to identify the ATE and adapt the instrument policy instead.

Optimal Policy with Noncompliance

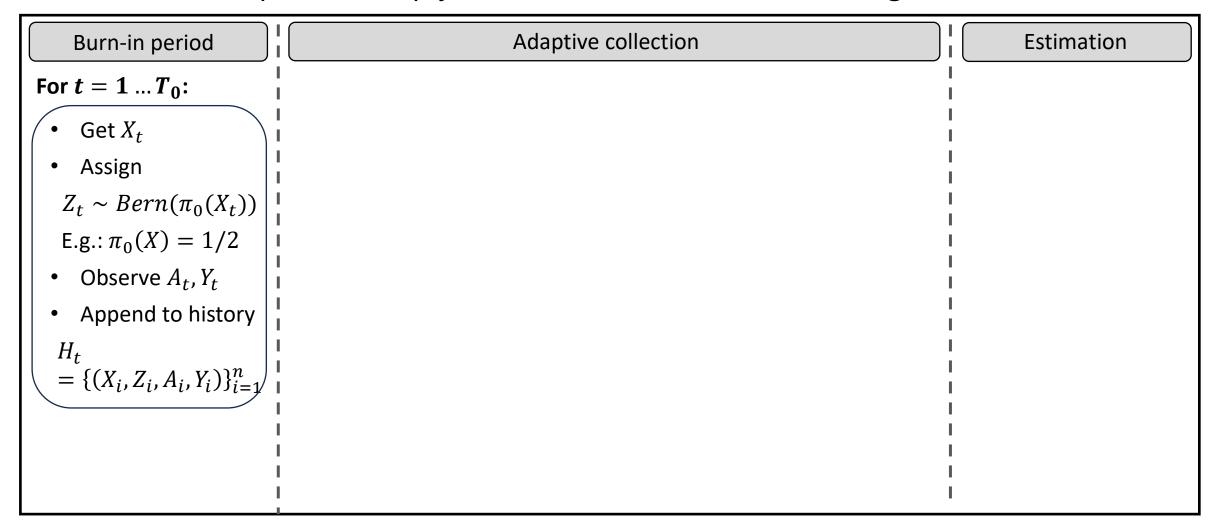
Fixed policy that minimizes asymptotic variance: $\pi^*(X) = \frac{\sqrt{\text{Var}(Y - A\delta(X) \mid Z = 1, X)}}{\sqrt{\text{Var}(Y - A\delta(X) \mid Z = 0, X)} + \sqrt{\text{Var}(Y - A\delta(X) \mid Z = 1, X)}}$ where: $\delta(X) = \frac{\delta^Y(X)}{\delta^A(X)} = \frac{\mathbb{E}[Y \mid X = x, Z = 1] - \mathbb{E}[Y \mid X = x, Z = 0]}{\mathbb{E}[A \mid X = x, Z = 1] - \mathbb{E}[A \mid X = x, Z = 0]}$ $\delta^A(x) \text{ (compliance factor)}$ Adaptive policy vs compliance 0.50 0.30Neyman allocation 0.30 0.0 0.5 0.0 0.5 0.0

- ATE Identification from Wang & Tchetgen Tchetgen (2018): $\tau = \mathbb{E}[\delta(x)]$.
 - Under IV relevance, exclusion, randomization given X and unconfounded compliance
- Generalizes Neyman: balances outcome noise and compliance noise.

AMRIV = Adaptive Multiply-Robust estimator for IV settings



AMRIV = Adaptive Multiply-Robust estimator for IV settings



AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period Adaptive collection **Estimation** For $t = T_0 ... T$: For $t = 1 ... T_0$: • Get X_t Estimate $\pi^*(X)$ Estimate $Var(Y - A\delta(X) \mid Z = z, X)$ as $\hat{\sigma}(z, X)$ from H_{t-1} . Assign $\tilde{\pi}_t(X \mid H_{t-1}) = \frac{\hat{\sigma}(1, X)}{\hat{\sigma}(0, X) + \hat{\sigma}(1, X)}$ $Z_t \sim Bern(\pi_0(X_t))$ E.g.: $\pi_0(X) = 1/2$ Truncate: $\pi_t(X \mid H_{t-1}) := \min(1 - \epsilon_t, \max(\epsilon_t, \tilde{\pi}_t))$ Observe A_t, Y_t Append to history $= \{(X_i, Z_i, A_i, Y_i)\}_{i=1}^n$

AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period

For
$$t = 1 ... T_0$$
:

- Get X_t
- Assign

$$Z_t \sim Bern(\pi_0(X_t))$$

E.g.:
$$\pi_0(X) = 1/2$$

- Observe A_t, Y_t
- Append to history

$$H_{t} = \{(X_{i}, Z_{i}, A_{i}, Y_{i})\}_{i=1}^{n}$$

Adaptive collection

For
$$t = T_0 ... T$$
:

Estimate $\pi^*(X)$

• Estimate $Var(Y - A\delta(X) \mid Z = z, X)$ as $\hat{\sigma}(z, X)$ from H_{t-1} .

$$\tilde{\pi}_t(X \mid H_{t-1}) = \frac{\hat{\sigma}(1, X)}{\hat{\sigma}(0, X) + \hat{\sigma}(1, X)}$$

• Truncate: $\pi_t(X \mid H_{t-1}) := \min(1 - \epsilon_t, \max(\epsilon_t, \tilde{\pi}_t))$

Estimate ϕ_t

- Get X_t , set $Z_t \sim \pi_t(X_t)$, observe A_t, Y_t .
- Estimate nuisances $\hat{\eta}_t$ from H_{t-1} via cross-fitting.
- Impute the round t effect ϕ_t as

$$\boldsymbol{\phi_t} = \phi(X_t, Z_t, A_t, Y_t, ; \pi_t, \hat{\eta}_t)$$

where ϕ is the **efficient influence function (EIF)** of τ .

Estimation

AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period

For $t = 1 ... T_0$:

- Get X_t
- Assign

$$Z_t \sim Bern(\pi_0(X_t))$$

E.g.:
$$\pi_0(X) = 1/2$$

- Observe A_t, Y_t
- Append to history

$$H_{t} = \{(X_{i}, Z_{i}, A_{i}, Y_{i})\}_{i=1}^{n}$$

Adaptive collection

For
$$t = T_0 ... T$$
:

Estimate $\pi^*(X)$

• Estimate $Var(Y - A\delta(X) \mid Z = z, X)$ as $\hat{\sigma}(z, X)$ from H_{t-1} .

$$\tilde{\pi}_t(X \mid H_{t-1}) = \frac{\hat{\sigma}(1, X)}{\hat{\sigma}(0, X) + \hat{\sigma}(1, X)}$$

• Truncate: $\pi_t(X \mid H_{t-1}) := \min(1 - \epsilon_t, \max(\epsilon_t, \tilde{\pi}_t))$

Estimate ϕ_t

- Get X_t , set $Z_t \sim \pi_t(X_t)$, observe A_t, Y_t .
- Estimate nuisances $\hat{\eta}_t$ from H_{t-1} via cross-fitting.
- Impute the round t effect ϕ_t as

$$\boldsymbol{\phi_t} = \phi(X_t, Z_t, A_t, Y_t, ; \pi_t, \hat{\eta}_t)$$

where ϕ is the **efficient influence function (EIF)** of τ .

Estimation

At
$$t = T$$
:

• Estimate τ as:

$$\hat{\tau}_T^{AMRIV} = \frac{1}{T} \sum_{t=1}^{T} \phi_t$$

• Calculate α -level confidence sequences:

$$[L_t, U_t]$$

 Decide whether to continue or stop data collection

Theoretical properties:

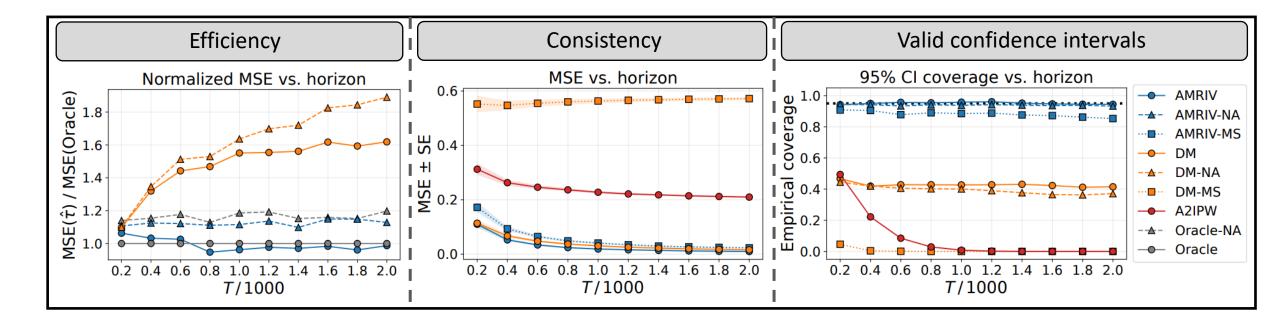
• Efficient:

$$\sqrt{T} \left(\hat{\tau}_T^{AMRIV} - \tau \right) \to \mathcal{N} \left(0, V_{eff}(\pi) \right)$$

with $\pi = \pi^*$ achieving the minimum bound.

- **Multiply-robust:** Consistent if either $\delta(X)$ or $\delta_A(X)$ is learned consistently; AMRIV is $O_p(T^{-1/2})$ if both $\delta(X)$ and $\delta_A(X)$ are $o_p(T^{-1/4})$.
- **Anytime-valid:** Can build anytime valid asymptotic confidence sequences (AsymCS) from online EIF variance ⇒ peek-safe early stopping.

Experimental Results



- **Efficiency:** Adaptivity improves efficiency of all estimators.
- **Consistency:** AMRIV-MS is consistent even when one of the nuisances is misspecified, whereas the direct method DM-MS is not.
- **Valid confidence intervals**: AMRIV achieves nominal (95%) coverage unlike non-robust methods.

Summary of Contributions and Impact

Key Contributions:

- We proposed an adaptive IV framework for online experiments with noncompliance and derived an optimal instrument assignment policy to minimize asymptotic variance.
- We introduced AMRIV, an adaptive IV estimator that provides strong theoretical guarantees: asymptotic efficiency, multiply-robust consistency, and time-uniform confidence sequences.
- We validated our framework through simulations and real-world applications.

Broader Impact:

• We enabled adaptive experimentation when treatment isn't assignable, delivering more information, earlier stopping, and valid inference for digital platforms, personalized medicine, and beyond.