

Semi-Supervised Regression with Heteroscedastic Pseudo-Labels

Xueqing Sun¹, Renzhen Wang^{1*}, Quanziang Wang¹, Yichen Wu², Xixi Jia³, Deyu Meng¹

¹ Xi'an Jiaotong University, ² City University of Hong Kong, ³ Xidian University

xqsun@stu.xjtu.edu.cn, rzwang@xjtu.edu.cn

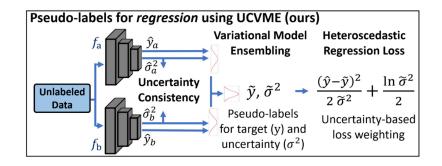
NeurIPS 2025

1. Background: Semi-Supervised Regression (SSR)

- Semi-Supervised classfication tasks: outputs are discrete and can be sharpened to encourage high-confidence predictions
 - Pseudo-labeling
 - Consistency regularization
- Semi-Supervised regression tasks: continous outputs and lack of well-defined decision boundaries
 - Consistency-based methods: design different constraints to ensure prediction consistency in SSR, such as RankUp¹, UCVME², CLSS³, ...
 - Uncertainty-based methods: provide a potential way to improve the quality of pseudo-labels for unlabeled data, such as SSDKL⁴, SimRegMatch⁵, ...
- [1] RankUp: Boosting semi-supervised regression with an auxiliary ranking classifier. In NeurIPS, 2024.
- [2] Semi-supervised deep regression with uncertainty consistency and variational model ensembling via bayesian neural networks. In AAAI, 2023.
- [3] Semi-supervised contrastive learning for deep regression with ordinal rankings from spectral seriation. In NeurIPS, 2023.
- [4] Semi-supervised deep kernel learning: Regression with unlabeled data by minimizing predictive variance. In NeurIPS, 2018.
- [5] Deep semi-supervised regression via pseudo-label filtering and calibration. In Applied Soft Computing, 2024.

1. Background: Consistency-based Methods

- UCVME²: generates high-quality pseudo-labels and uncertainty estimates for heteroscedastic regression.
 - uncertainty-based loss weighting
 - variational model ensembling method



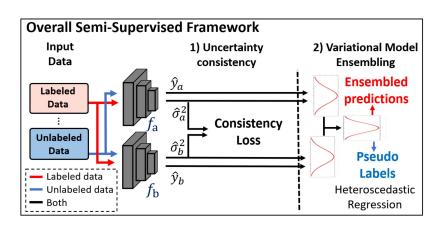
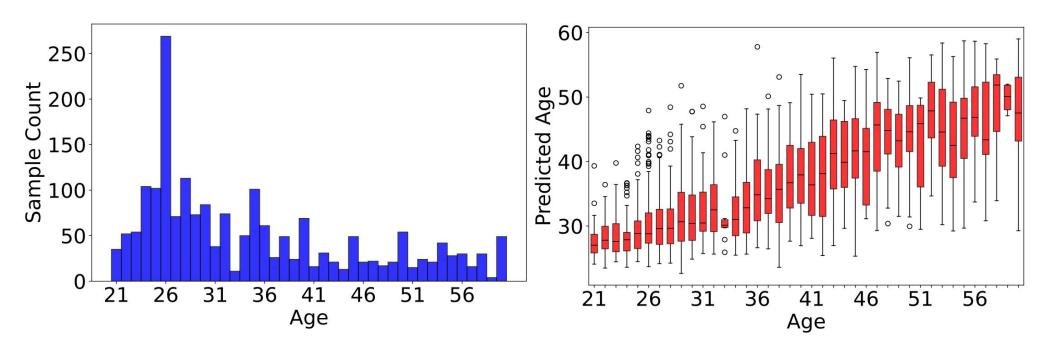


Figure 2: Semi-supervised deep regression framework for our UCVME method. UCVME improves overall pseudolabel quality and assigns greater sample weights to pseudolabels with low uncertainty.

2. Motivation

• Motivation: assigning appropriate uncertainty values to pseudo-labels, reflecting their varying degrees of error during training.



Left: Histogram of true labels for the unlabeled data. **Right:** Box-plot of pseudo-labels generated by UCVME.

3. Method: The proposed framework

- Overall framework includes two core components
 - Heteroscedastic Pseudo-Labels: aims to learn the uncertainty or noise in these pseudo-labels
 - Bi-level Optimization: aims to learn the optimal parameters

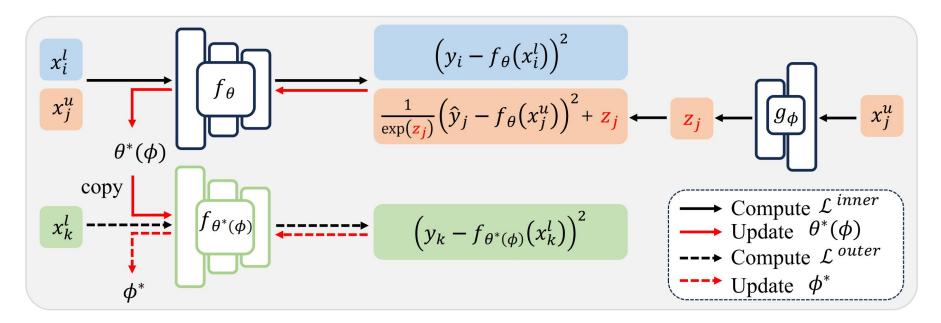


Figure 2: **Method Overview.** The proposed bi-level optimization framework consists of two main steps: (1) Inner-loop update, which updates the regression model using \mathcal{L}^{inner} as defined in eq. (5), where $z_j = \log \sigma_j^2$; (2) Outer-loop update, which updates the uncertainty-learner using \mathcal{L}^{outer} as defined in eq. (6). Note that we assume a batch size of 1 for better visualization.

3. Method: Heteroscedastic Pseudo-Labels

• Heteroscedastic Pseudo-Labels: treats the pseudo-labels for each sample as heteroscedastic

$$\hat{y}_{j} = f_{\theta}(x_{j}^{u}) + \epsilon_{j}, \quad \epsilon_{j} \sim \mathbb{N}(0, \sigma_{j}^{2})$$

$$-\log p(\hat{y}_{j}|x_{j}^{u}) \propto \frac{\left(\hat{y}_{j} - f_{\theta}(x_{j}^{u})\right)^{2}}{\sigma_{j}^{2}} + \log(\sigma_{j}^{2})$$

$$\mathcal{L}_{u} = \sum_{x_{j}^{u} \in \mathcal{B}_{u}} \frac{1}{\sigma_{j}^{2}} \left(\hat{y}_{j} - f_{\theta}(x_{j}^{u})\right)^{2} + \sum_{x_{j}^{u} \in \mathcal{B}_{u}} \log(\sigma_{j}^{2})$$

• Uncertainty-learner g_{ϕ} : dynamically assign uncertainty values to pseudo-labels

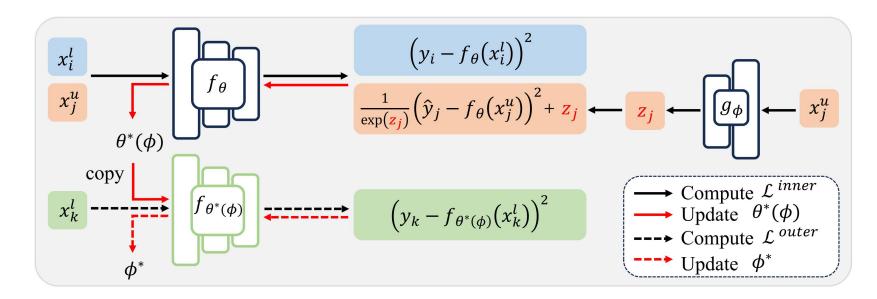
$$z_j:=\log\sigma_j^2=\ g_{\phi}(x_j^u)$$

• Jointly optimization $\{\theta, \phi\}$:

$$\{\theta^*, \phi^*\} = \underset{\theta, \phi}{\operatorname{arg\,min}} \sum_{x_i^l \in \mathcal{B}_l} \left(y_i - f_{\theta}(x_i^l) \right)^2 + \lambda \sum_{x_j^u \in \mathcal{B}_u} \frac{1}{\exp(z_j)} \left(\hat{y}_j - f_{\theta}(x_j^u) \right)^2 + z_j$$

3. Method: Bi-level Optimization

- Bi-level Optimization:
 - Inner-loop for optimizing f_{θ} : using labeled and pseudo-labeled data with uncertainty to better learn sample representations.
 - Outer-loop for optimizing g_{ϕ} : generating well-calibrated uncertainty for f_{θ} , protecting it from incorrect pseudo-labels while maintaining generalization on labeled data.
 - Training algorithm:
 - update θ : $\theta^{t+1}(\phi^t) = \theta^t \alpha \cdot \nabla_{\theta} \mathcal{L}^{inner}(\theta^t, \phi^t)$
 - update ϕ : $\phi^{t+1} = \phi^t \beta \cdot \nabla_{\phi} \mathcal{L}^{outer}(\theta^{t+1}(\phi^t))$



4. Experiments: IMDB-WIKI

• IMDB-WIKI (age): 191509(train data), 11012(test data), 11012(val data)

Method	$\gamma = 5\%$		$\gamma = 10\%$		$\gamma = 20\%$	
Wethod	MAE↓	R²↑	MAE↓	R²↑	MAE↓	R²↑
Fully-Supervised	7.974 ± 0.043	0.724 ± 0.002	7.974 ± 0.043	0.724 ± 0.002	7.974 ± 0.043	0.724 ± 0.002
Supervised	10.172 ± 0.077	0.610 ± 0.004	9.248 ± 0.052	0.657 ± 0.002	8.647 ± 0.099	0.690 ± 0.005
Mean Teacher	9.492 ± 0.051	0.647 ± 0.002	8.633 ± 0.093	0.689 ± 0.002	8.191 ± 0.066	0.711 ± 0.002
Temporal Ensembling	11.335 ± 0.114	0.532 ± 0.007	9.517 ± 0.064	0.639 ± 0.004	9.577 ± 0.126	0.639 ± 0.007
SSDKL	10.116 ± 0.073	0.611 ± 0.004	9.488 ± 0.031	0.641 ± 0.002	9.056 ± 0.043	0.656 ± 0.003
TNNR	10.069 ± 0.088	0.612 ± 0.005	9.309 ± 0.052	0.654 ± 0.003	8.640 ± 0.033	0.688 ± 0.001
SimRegMatch	9.908 ± 0.097	0.628 ± 0.004	9.110 ± 0.166	0.665 ± 0.007	8.587 ± 0.094	0.693 ± 0.006
UCVME	9.730 ± 0.156	0.633 ± 0.007	8.920 ± 0.039	0.673 ± 0.004	8.309 ± 0.117	0.698 ± 0.003
CLSS	9.906 ± 0.058	0.621 ± 0.007	9.251 ± 0.107	0.656 ± 0.006	8.781 ± 0.070	0.681 ± 0.003
RankUp	10.251 ± 0.072	0.599 ± 0.005	8.836 ± 0.047	0.676 ± 0.003	8.216 ± 0.022	0.703 ± 0.001
Ours	9.177 ± 0.061	0.664 ± 0.003	8.539 ± 0.065	0.695 ± 0.003	8.166 ± 0.071	0.712 ± 0.002

Our proposed method achieves new state-of-the-art, especially in scenarios where the labeled data is **scarce**.

4. Experiments: Ablation

How our algorithm adjusts uncertainty

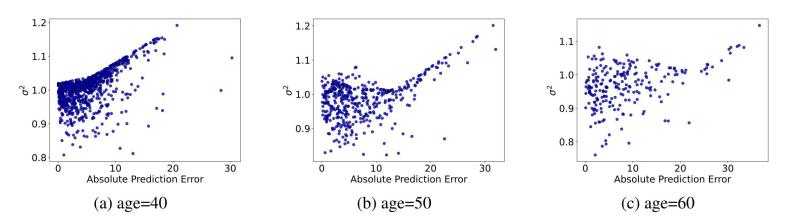


Figure 5: Correlation analysis between estimated uncertainty σ^2 and absolute prediction error on IMDB-WIKI with $\gamma=10\%$ under different age.

Ablation

Table4: Ablation study. BL, UL and BLO refer to Baseline, Uncertainty-learner and Bi-level Optimization.

Components			$\gamma = 5\%$		$\gamma = 10\%$	
BL	UL	BLO	MAE↓	R²↑	MAE↓	R²↑
√	×	X	9.512	0.651	8.864	0.683
✓	✓	×	9.914	0.630	9.562	0.651
✓	✓	✓	9.177	0.664	8.539	0.695

5. Summary

- We propose an uncertainty-aware pseudo-labeling framework for SSR tasks
 - Heteroscedastic Pseudo-Labels
 - Bi-level Optimization

Paper (arXiv):

https://arxiv.org/abs/2510.15266

Code:

https://github.com/sxq11/Heteroscedastic-Pseudo-Labels

Contach us:

xqsun@stu.xjtu.edu.cn, rzwang@xjtu.edu.cn

Thanks for your attention!