

MoE-Gyro: Self-Supervised Over-Range Reconstruction and Denoising for MEMS Gyroscopes

School of Integrated Circuits, Southeast University

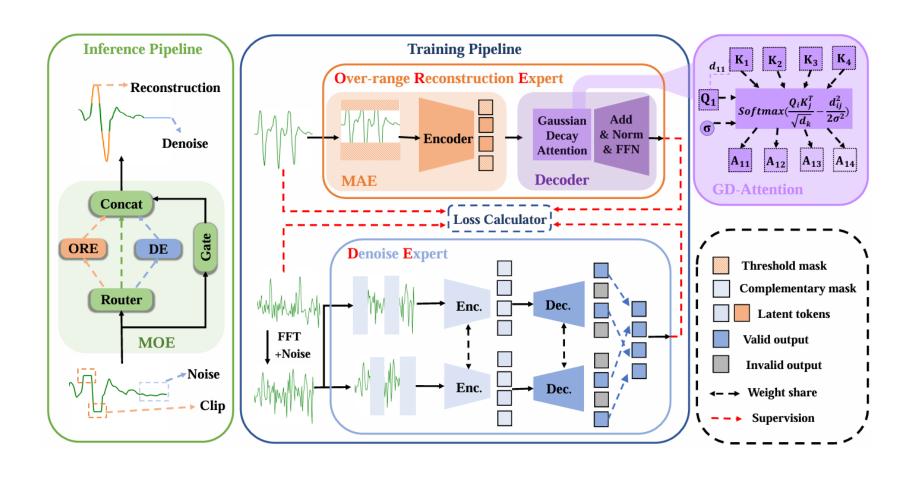
Massive Data Computing Lab, Harbin Institute of Technology

Feiyang Pan†, Shenghe Zheng†, Chunyan Yin*, Guangbin Dou*

Introduction & Motivation

- Core Conflict: The fundamental trade-off in MEMS sensors.
 - High Measurement Range High Noise
 - Low Noise Limited Measurement Range
- Existing Gaps:
 - Hardware Solutions: Complex, costly, and hard to scale.
 - **Prior Al Methods:** Require expensive, fully-supervised data and don't solve the core range-noise trade-off.
- Our Key Technical Challenge: In a single model, large-scale Reconstruction gradients overwhelm subtle Denoising gradients

Method: MoE-Gyro

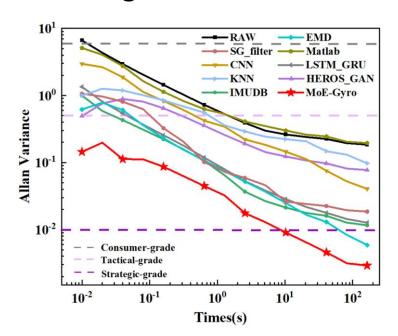


Our Solution: A Mixture-of-Experts (MoE) architecture for task decoupling.

1. Intelligent Gating

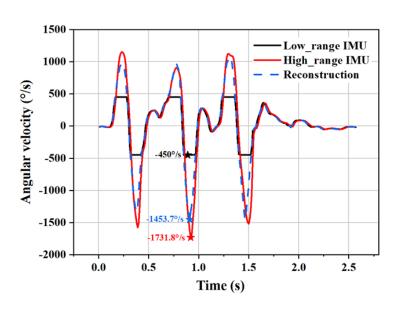
2. Expert Processing

3. Concatenation



Key Experimental Results

Benchmark: We introduce ISEBench for IMU Signal Enhancement.


Denoising Performance:

MoE-Gyro achieves the best performance

Key Metric: 98.4% reduction in Bias Instability (BI)

Range Extension:

Extends measurable range from $\pm 450^{\circ}$ /s to $\pm 1500^{\circ}$ /s

Conclusion

Contributions:

- MoE-Gyro: The first self-supervised MoE framework to simultaneously solve reconstruction and denoising
- **Broke the Trade-off**: We effectively broke the fundamental range-noise trade-off in MEMS sensors without hardware changes.
- **ISEBench**: Released the first open-source benchmark for IMU signal enhancement.

Code: https://github.com/2002-Pan/Moe-Gyro

Contact us at: 230238437@seu.edu.cn

Project

Wechat

Thanks