

Presenter: Xingyu Ren

Report time: 2025/10/21

Xingyu Ren*, Pengwei Liu*, Pengkai Wang*, Guanyu Chen, Qinxin Wu, Dong Ni[†]

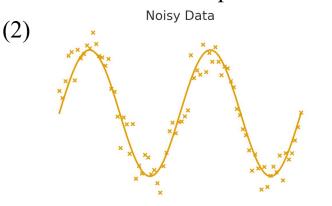
Background: Semi-supervised Surrogates for Physics

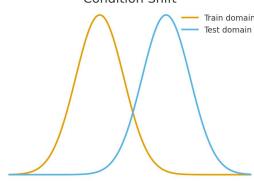
· Problem: High-fidelity solvers are accurate but costly; scarce labels and distribution shift hinder supervised surrogates, while naïve SSL amplifies pseudo-label noise.

· Challenges: Noisy pseudo-labels, non-uniform meshes/time steps, and shift-robustness with calibrated uncertainty.

· Gap: Generic SSL assumes i.i.d. and ignores physics; it lacks role-aware treatment of epistemic vs aleatoric uncertainty to decide what to trust or discard.

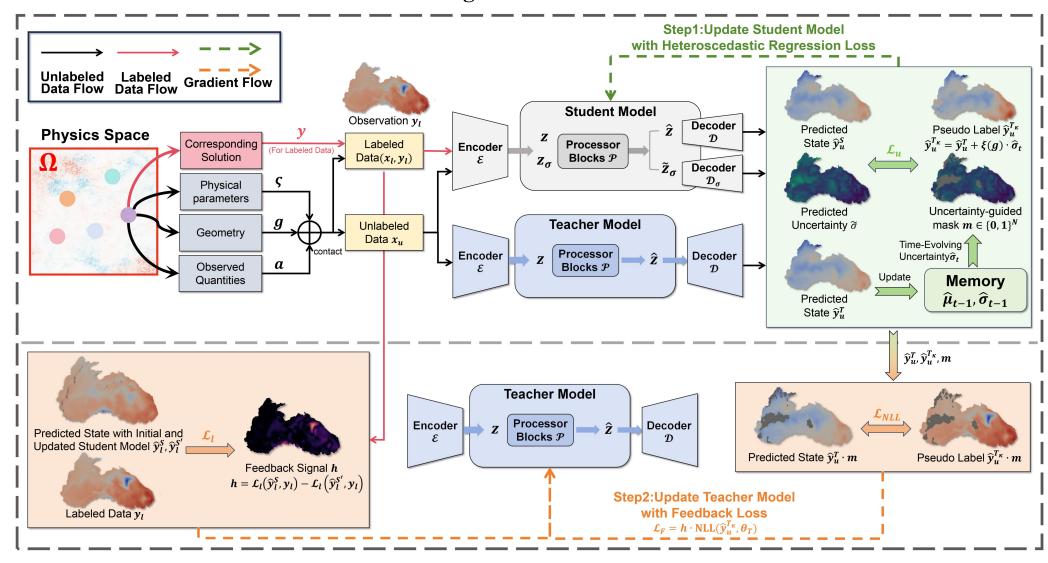
Target: We need uncertainty-aware SSL that filters and corrects pseudo-labels and remains reliable under shift.





Xingyu Ren*, Pengwei Liu*, Pengkai Wang*, Guanyu Chen, Qinxin Wu, Dong Ni†

Key method: UMPL—A few shot SSL method for high dimensional PDEs

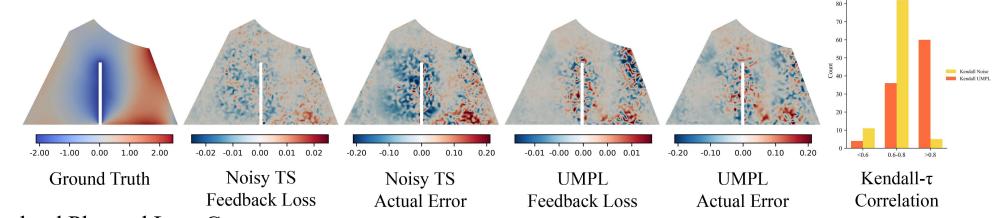


NEURAL INFORMATION PROCESSING SYSTEMS

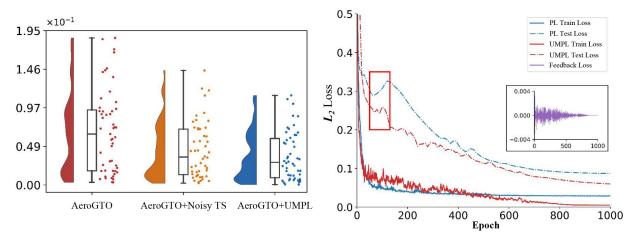
Xingyu Ren*, Pengwei Liu*, Pengkai Wang*, Guanyu Chen, Qinxin Wu, Dong Ni[†]

Experiments & Results

Comparison of Feedback Loss and True Pseudo-label Error during Training:



The Raincloud Plot and Loss Curves:



(a) Raincloud Plots of C_d

(b) Loss Curve on Stationary Lid

Xingyu Ren*, Pengwei Liu*, Pengkai Wang*, Guanyu Chen, Qinxin Wu, Dong Ni†

Experiments & Results

Results on Different Tasks and Models:

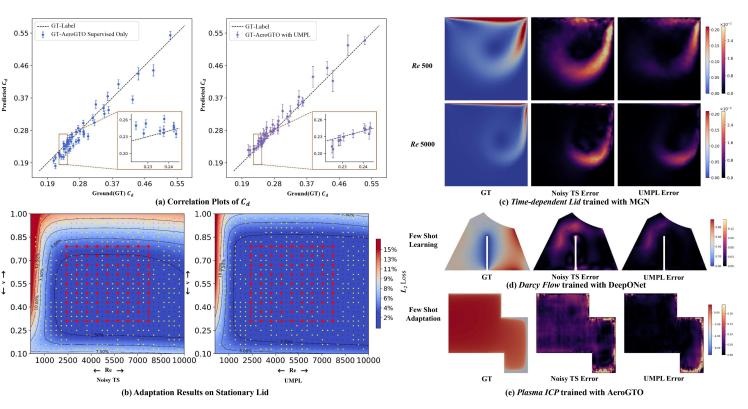


Table 1: We compare the performance of our method against four baselines across four different models under a labeled data ratio of r=10% for all tasks. **Cyan**, **Yellow**, and **Green** indicate the best, second-best, and worst L_2 loss values, respectively. \indicates non-convergence.

Model		BENCHMARKS							
	Method	Darcy Flow	Ahmed	NSM2d	Plasma ICP	Station	ary Lid	Black Sea	
						w/o OOD	w/ OOD	In-T	Out-T
DeepONet[3]	Supervision Only	7.98e-2	١ ١	3.07e-1	١ ١	6.07e-2	1.69e-1	1.45e-1	2.41e-
	Pseudo Label[1]	8.37e-2	١	2.82e-1	١	5.65e-2	1.73e-1	1.51e-1	2.35e-
	Mean Teacher[5]	8.36e-2	١	2.77e-1	١	5.57e-2	1.77e-1	1.46e-1	2.22e-
	Noisy TS[6]	7.83e-2	١	2.57e-1	١ ١	5.38e-2	1.42e-1	1.24e-1	1.67e-
	UMPL(ours)	6.94e-2	١	2.23e-1	١	4.57e-2	1.08e-1	9.61e-2	1.43e-
	PROMOTION	11.36%	١	13.22%	\	15.05%	23.94%	22.50%	14.37%
MGN[4]	Supervision Only	8.06e-2	9.11e-2	5.62e-1	١ ١	3.82e-2	1.02e-1	9.84e-2	1.13e-
	Pseudo Label[1]	7.33e-2	8.76e-2	4.95e-1	١ ١	2.22e-2	1.13e-1	9.97e-2	1.08e-
	Mean Teacher[5]	7.33e-2	8.32e-2	4.41e-1	١	1.97e-2	1.07e-1	9.83e-2	1.07e-
	Noisy TS[6]	6.49e-2	6.92e-2	3.85e-1	١	2.20e-2	9.48e-2	8.51e-2	9.67e-
	UMPL(ours)	5.74e-2	6.34e-2	3.51e-1	١	1.64e-2	7.91e-2	8.19e-2	8.99e-
	PROMOTION	11.55%	8.38%	8.83%	\	16.75%	16.56%	3.76%	7.03%
Transolver[7]	Supervision Only	6.14e-2	7.69e-2	2.71e-1	1.90e-1	3.69e-2	9.55e-2	9.34e-2	1.12e-
	Pseudo Label[1]	5.24e-2	7.30e-2	2.35e-1	1.85e-1	1.79e-2	1.08e-1	9.16e-2	9.79e-
	Mean Teacher[5]	5.34e-2	7.21e-2	2.21e-1	1.72e-1	2.19e-2	1.31e-1	9.26e-2	9.68e-
	Noisy TS[6]	4.66e-2	5.89e-2	1.79e-1	1.56e-1	1.64e-2	9.53e-2	8.81e-2	9.17e-
	UMPL(ours)	4.37e-2	5.17e-2	1.51e-1	1.41e-1	1.24e-2	7.32e-2	7.74e-2	8.53e-
	PROMOTION	6.22%	12.22%	15.64%	9.61%	24.39%	23.18%	12.14%	6.97 %
AeroGTO[2]	Supervision Only	3.82e-2	6.88e-2	1.72e-1	9.30e-2	3.51e-2	9.44e-2	8.95e-2	1.10e-
	Pseudo Label[1]	3.17e-2	5.85e-2	1.51e-1	7.20e-2	8.75e-3	1.17e-1	8.24e-2	1.03e-
	Mean Teacher[5]	3.03e-2	5.86e-2	1.45e-1	6.97e-2	2.17e-2	1.24e-1	9.07e-2	1.02e-
	Noisy TS[6]	2.85e-2	4.71e-2	1.39e-1	6.24e-2	1.09e-2	7.98e-2	7.42e-2	9.38e-
	UMPL(ours)	2.56e-2	3.63e-2	1.21e-1	5.25e-2	6.91e-3	6.33e-2	6.66e-2	8.12e-
	PROMOTION	10.17%	22.92%	12.94%	15.86%	21.02%	20.67%	10.78%	13.43

References

[1] Pseudo label [Lee et al., ICML 2013]

[2] AeroGTO [Pengwei Liu et al., AAAI 2025]

[3] DeepONet [Lu Lu et al., Nature machine intelligence]

[4] MGN [Tobias Pfaff et al., ICLR 2020]

[5] Mean Teacher [Antti Tarvainen et al., NIPS 2017]

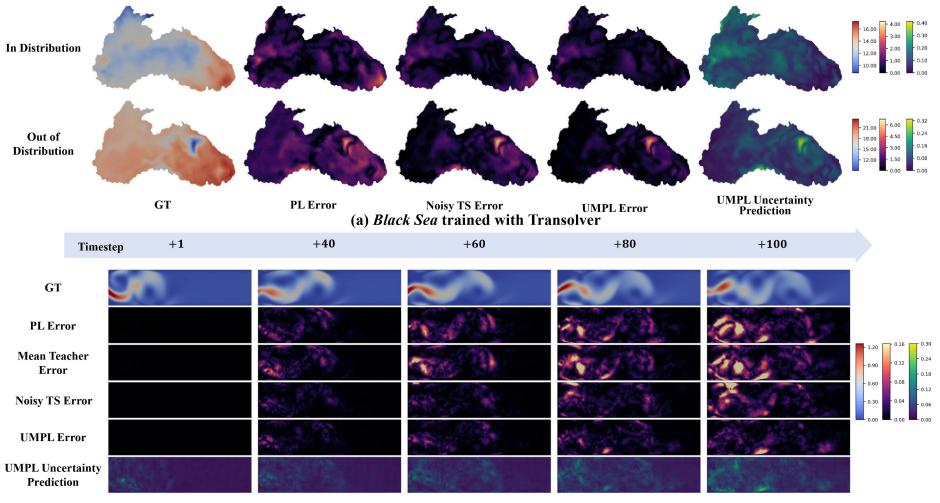
[6] Noisy TS [Antti Tarvainen et al., AAAI 2024]

[7] Transolver [Haixu Wu et al., ICML 2024]

Xingyu Ren*, Pengwei Liu*, Pengkai Wang*, Guanyu Chen, Qinxin Wu, Dong Ni[†]

Experiments & Results

Visualization Results across Multiple Methods and Models:



(b) NSM2d trained with PhysGTO

Thank you!

Code& Model: https://github.com/small-dumpling/UMPL

Email: 12332063@zju.edu.cn