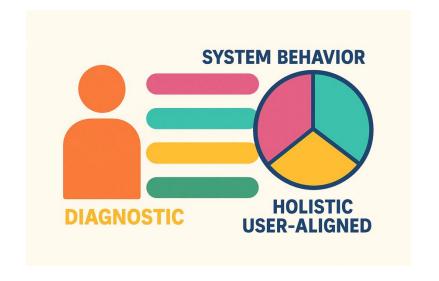


ARECHO: Autoregressive Evaluation via Chain-Based Hypothesis Optimization for Speech Multi-Metric Estimation


Jiatong Shi¹, Yifan Cheng², Bo-hao Su¹, Hye-jin Shim¹, Jinchuan Tian¹, Samuele Cornell¹, Yiwen Zhao¹, Siddhant Arora¹, Shinji Watanabe¹

¹CMU, ²HUST

Motivation

Multi-metric mindset towards

 A diagnostic, holistic, and useraligned view of speech generation system behavior

Introducing VERSA

VERSA: A Versatile Evaluation Toolkit for Speech, Audio, and Music

Jiatong Shi¹, Hyejin Shim¹, Jinchuan Tian¹, Siddhant Arora¹, Haibin Wu², Darius Petermann³, Jia Qi Yip⁴, You Zhang⁵, Yuxun Tang⁶, Wangyou Zhang⁷, Dareen Alharthi¹, Yichen Huang¹, Koichi Saito⁸, Jionghao Han¹, Yiwen Zhao¹, Chris Donahue¹, Shinii Watanabe¹.

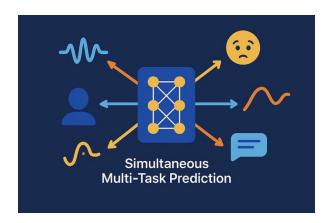
¹Carnegie Mellon University, ²Microsoft, ³Indiana University, ⁴Nanyang Technological University, ⁵University of Rochester, ⁶Renmin University of China, ⁷Shanghai Jiaotong University, ⁸Sony AI

- VERSA (Versatile Evaluation for Speech and Audio)
 - Targets a general interface for speech and audio evaluation
 - A collection of conventional/recent automatic quality evaluation metrics
 - Highly integration to toolkits / challenges

Further Step from VERSA

Can we expand further from VERSA, with a single-unified model?

- What are the potential benefits?
 - Enhanced robustness to various conditions
 - Better utilization of the information
 - Elevated efficiency of inference

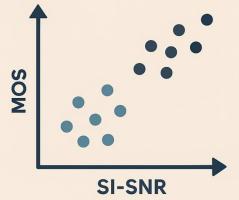

General Concept of Uni-VERSA

Uni-VERSA: Versatile Speech Assessment with a Unified Network

Jiatong Shi¹, Hye-Jin Shim¹, Shinji Watanabe¹

¹Language Technologies Institute, Carnegie Mellon University, U.S.A.

jiatongs@cs.cmu.edu

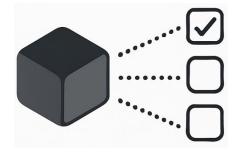

However, challenges remains

Diverse Scale Issues

Limited Data Availability

Dependency Modeling with Flexible Control

VARIOUS SCALES AND DISTRIBUTIONS

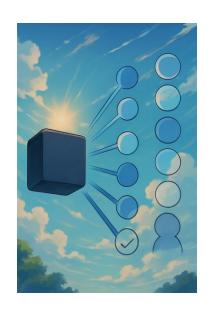


However, challenges remains

Diverse Scale Issues

- Limited Data Availability
 - We can not have a full set of metrics for all the data

Dependency Modeling with Flexible Control



However, challenges remains

Diverse Scale Issues

Limited Data Availability

- Dependency Modeling with Flexible Control
 - Difficulty in leveraging dependency benefits
 - Inefficient modeling with incomplete metric labels

ARECHO: Autoregressive Evaluation

Tokenizing Everything

Dynamic Classifier Chain

Two-step Confidence-oriented Decoding

Experiments

Dataset combination (87 metrics included)

Two combination:

- Base (a 300h domain-balanced training set)
- Scale (a 2kh larger-scale training set)

Training:

- Uni-VERSA (baseline);
- Uni-VERSA-T (baseline + tokenization);
- ARECHO (proposed)

Main Results

MSE: Mean square error;

LCC: Linear correlation coefficient

KTAU: Ktau ranking-based correlation

Acc: Accuracy F1: F1 measure

Data	Domain	Model	Token	Chain		gression Me	Classification Metrics		
					MSE (↓)	LCC (†)	KTAU (†)	Acc (↑)	F1 (↑)
		UniVERSA	Х	Х	160.06	0.69	0.53	0.68	0.42
	Dev.	UniVERSA-T	✓	X	40.95	0.78	0.68	0.70	0.46
		ARECHO	✓	✓	25.73	0.86	0.72	0.71	0.51
		UniVERSA	Х	Х	61.54	0.71	0.54	0.69	0.43
	Enhanced	UniVERSA-T	✓	X	27.34	0.81	0.68	0.70	0.47
		ARECHO	✓	✓	20.58	0.84	0.69	0.72	0.51
Base		UniVERSA	Х	X	170.65	0.61	0.48	0.70	0.46
	Corrupted	UniVERSA-T	✓	X	77.72	0.74	0.67	0.71	0.50
	-	ARECHO	✓	✓	44.22	0.82	0.70	0.72	0.55
		UniVERSA	Х	Х	58.79	0.76	0.54	0.69	0.45
	Synthesized	UniVERSA-T	✓	X	8.10	0.84	0.68	0.72	0.50
	•	ARECHO	✓	✓	4.99	0.91	0.78	0.79	0.65
		UniVERSA	Х	X	96.99	0.69	0.52	0.69	0.45
	Avg. Test	UniVERSA-T	✓	X	37.72	0.79	0.68	0.71	0.49
	-	ARECHO	✓	✓	23.26	0.86	0.72	0.74	0.57

Effect of tokenization

-> Consistent improvements on classification metrics due to mitigated scale differences

Enhanced

Corrupted

Synthesized

Avg. Test

Base

UniVERSA-T ARECHO UniVERSA

UniVERSA-T ARECHO

UniVERSA

UniVERSA UniVERSA-T

ARECHO

UniVERSA-T ARECHO

en Chain		Reg MSE (\psi)	gression Me	Classification Metrics Acc (†) F1 (†)					
		TAIDE (4)	LCC ()	KIAC ()	Acc (1)	F T ()			
	.,	160.06	0.60	0.50	0.60	0.40			
	X	160.06	0.69	0.53	0.68	0.42			
	X	40.95	0.78	0.68	0.70	0.46			
	✓	25.73	0.86	0.72	ŷ.71	û.51			
,	Х	61.54	0.71	0.54	0.69	0.43			
•	X	27.34	0.81	0.68	0.70	0.47			
•	1	20.58	0.84	0.69	0.72	0.51			
,	Х	170.65	0.61	0.48	0.70	0.46			
•	X	77.72	0.74	0.67	0.71	0.50			
•	1	44.22	0.82	0.70	0.72	0.55			
,	Х	58.79	0.76	0.54	0.69	0.45			
•	X	8.10	0.84	0.68	0.72	0.50			
•	1	4.99	0.91	0.78	0.79	V.05			
,	Х	96.99	0.69	0.52	0.69	0.45			
•	X	37.72	0.79	0.68	0.71	0.49			
•	1	23.26	0.86	0.72	0.74	0.57			

Main Results

Effect of AR Modeling

-> Consistent improvements with AR modeling

Data	Domoin	Model	Token	Chain	Reg	gression Me	Classification Metrics		
Data	Domain				MSE (↓)	LCC (†)	KTAU (\uparrow)	Acc (↑)	F1 (↑)
Base	Dev.	UniVERSA UniVERSA-T ARECHO	×	X X	160.06 40.95 25.73	0.69 0.78 0.86	0.53 0.68 0.72	0.68 0.70 0.71	0.42 0.46 0.51
	Enhanced	UniVERSA UniVERSA-T ARECHO	× •	×	61.54 27.34 20.58	0.71 0.81 0.84	0.54 0.68 0.69	0.69 0.70 0.72	0.43 0.47 0.51
	Corrupted	UniVERSA UniVERSA-T ARECHO	× •	×	170.65 77.72 44.22	0.61 0.74 0.82	0.48 0.67 0.70	0.70 0.71 0.72	0.46 0.50 0.55
	Synthesized	UniVERSA UniVERSA-T ARECHO	× •	×	58.79 8.10 4.99	0.76 0.84 0.91	0.54 0.68 0.78	0.69 0.72 0.79	0.45 0.50 0.65
	Avg. Test	UniVERSA UniVERSA-T ARECHO	× •	× ×	96.99 37.72 23.26	0.69 0.79 0.86	0.52 0.68 0.72	0.69 0.71 0.74	0.45 0.49 0.57

Dependency Modeling

Top 3 – Bottom 3 metrics ranked by average position (Avg. Pos.) across three test sets

An option to show **dependency reasoning** in ARECHO

Test Set Rank		Metric Name	Avg. Pos.	
	Top-1	Q-SpeakerGender	16.50	
	Top-2	Q-SpeechImpairment	20.35	
Enhanced	Top-3	Q-SpeechStyle	21.47	
Emianceu	Btm-3	SNR Simulation	163.52	
	Btm-2	NISQA Real MOS	167.91	
	Btm-1	VoiceMOS Real MOS	171.58	
	Top-1	RIR Room Size	1.82	
	Top-2	Q-SpeechImpairment	12.65	
Corrupted	Top-3	Q-SpeechDelivery	13.15	
Corrupted	Btm-3	CER	167.26	
	Btm-2	NISQA Real MOS	170.62	
	Btm-1	VoiceMOS Real MOS	171.38	
	Top-1	Q-Background	12.09	
	Top-2	NISQA Coloration	27.51	
Synthesized	Top-3	Q-Purpose	27.95	
Sjimiesizeu	Btm-3	C _{bak}	154.75	
	Btm-2	SNR Simulation	158.64	
	Btm-1	CER	161.61	

Dependency Modeling

Q-Gender	Q-SpeechImpariment	Q-SpeakingStyle	Q-EnvQuality	Q-PitchRange	Q-VocComplexity	Q-VolumeLevel	RealLanguage	Q-ContentRegister	SRMR
SpoofS	NISQA-NOI	Q-Emotion	AA-PC	Q-Background	AA-PQ	Q-ChannelType	LID	Q-Clarity	SE-CI-SDR
DNSMOSP.835	SWR/SCR	Q-Purpose	WER	Q-VoiceType	SingMOS	SE-SI-SNR	Q-Lang	Q-SpeechRate	SCOREQ
NISQA-COL	Q-EmoVocalization	NISQA-LOUD	Q-SpeakerCount	Q-Age	PAM	UTMOS	AA-CE	NISQA-MOS	DNSMOSP.808
SSQA	PLCMOS	Q-Pitch	AA-CU	CER	SE-SDR	UTMOSv2	NISQA-DIS	CI-SDR	D-Distance
STOI	SE-SAR	SDR	SI-SNR	MCD	D-BERT	F0Corr	F0RMSE	SPK-SIM	D-BLEU
PESQ	URGENT MOS	SAR	CD	WSS	LLR	EMO-SIM	NCM	Covl	Reference Text Length
VISQOL	Csig	CSII-MID	Cbak	CSII-HIGH	SCOREQ w. Ref.	ASR-Mismatch	CSII-LOW	NOMAD	RIR Room Size
Noresqa	FWSEGSNR	RT60	Predicted Text Length	SNR Simulation	NISQA Real MOS	VoiceMOS Real MOS			

Check full metric order in the paper!

Future works

- Scaling!
- ARECHO as a reward model
- ARECHO + Uni-VERSA
- Same concept in pre-training/mid-training (meta data permutation)
- From fixed metric set to natural language (connecting to LLM)
 - How to combine the information
 - How to activate the usage

Acknowledgements

• Thanks to all the collaborators to these projects, including
Jinchuan Tian (CMU), Yifan Cheng (HUST), Bo-Hao Su (CMU), Samule Cornell (CMU),
Yihan Wu (RUC), Jia Qi Yip (NTU - Singapore), You Zhang (Dolby), Wangyou Zhang
(SJTU), Darius Petermann (IU), Yichen Huang (CMU), William Chen (CMU), Yuning
Wu (RUC), Yuxun Tang (RUC), Dareen Alharhi (CMU), Yiwen Zhao (CMU), Jionghao
Han (CMU), Wenhao Feng (CMU), Tejes Srivastava (Uchicago), Haibin Wu
(Microsoft), Hye-Jin Shim (CMU), Chris Donahue (CMU), Qin Jin (RUC), Shinji
Watanabe (CMU)

Icons and images are either from flaticon.com or generated from GPT-4o.

Thank you for listening!

