

LeVo: High-Quality Song Generation with Multi-Preference Alignment

Shun Lei¹, Yaoxun Xu¹, Zhiwei Lin¹, Huaicheng Zhang³, Wei Tan², Hangting Chen², Yixuan Zhang², Chenyu Yang⁴, Haina Zhu⁵, Shuai Wang⁶, Zhiyong Wu¹, Dong Yu²

¹ Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

² Tencent AI Lab ³ Wuhan University

⁴ The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, China ⁵ X-LANCE Lab, Shanghai Jiao Tong University, Shanghai

⁶ School of Intelligence Science and Technology, Nanjing University, Suzhou, China

Introduction

LeVo: High-Quality Song Generation with Multi-Preference Alignment

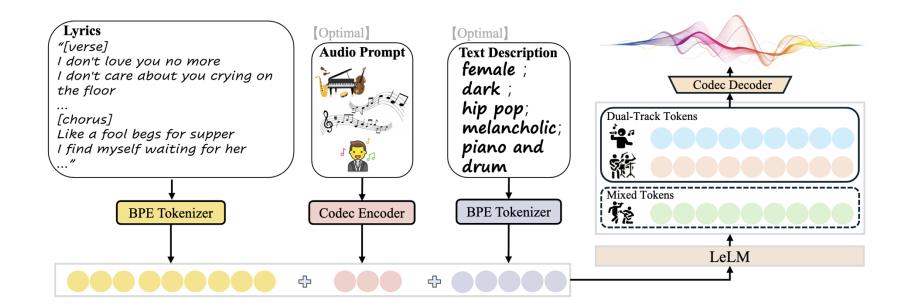
Problem

- **□** Token Representation Trade-offs
 - **▶** Mixed Tokens (Vocal + Accompaniment Combined)
 - Pros: High vocal-instrument harmony & musicality
 - Cons: Degraded audio quality (quantization loss) & intelligibility (accompaniment masks vocals)
 - > Dual-Track Tokens (Separate Vocal & Accompaniment Sequences):
 - Pros: Better sound quality & lyric alignment
 - Cons: Weaker musicality (increased sequence complexity) & vocal—instrument harmony (isolated prediction of two tracks)
- ☐ Data Scarcity and Preference Misalignment
 - ➤ Uneven Quality → model becomes unstable
 - Lack of musicality annotation → model cannot learn prior about musicality → generated songs do not match human preferences
 - ➤ Unreliable automatic annotations → weak instruction following (lyrics / text prompt)

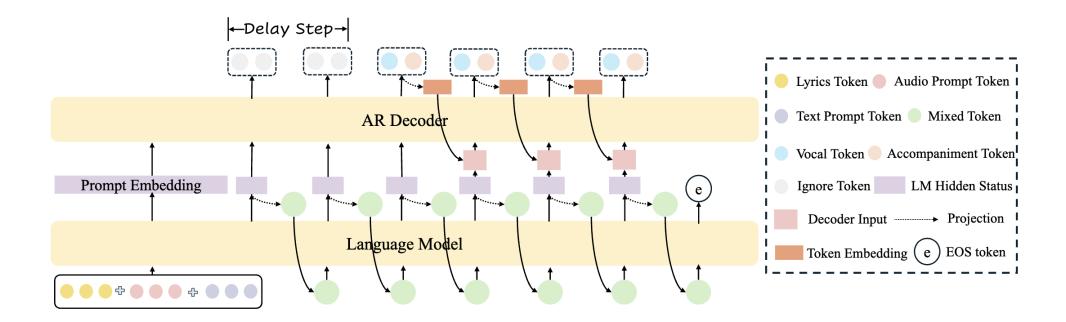
Introduction

LeVo: High-Quality Song Generation with Multi-Preference Alignment

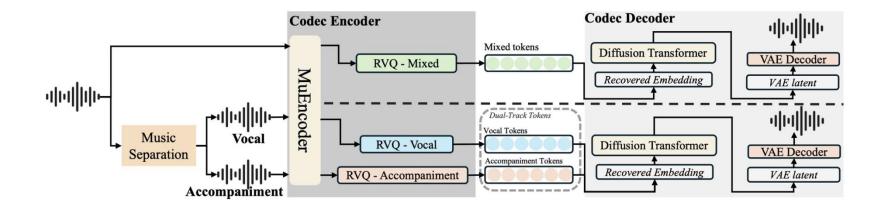
Contribution


- ☐ Propose LeLM for parallel modeling of Mixed Tokens and Dual-Track Tokens
 - Mixed Tokens: Capture high-level semantic information like melody and structure
 - Dual-Track Tokens: Capture fine-grained details for high fidelity vocals & accompaniment
- **□** Introduce Multi-Preference Alignment Strategy for music generation
 - > Jointly optimizes: Lyric Alignment, Prompt Consistency, Musicality
- Establish a Three-Stage Training Paradigm: Pre-training → Modular Extension Training → Multi-Preference Alignment
 - ▶ Pre-training → diversity & vocal—instrument harmony
 - ➤ Modular Extension Training → enhance sound quality & musicality w/o breaking pre-train knowledge
 - ➤ Multi-Preference Alignment → further improve instruction following & musicality

LeVo: High-Quality Song Generation with Multi-Preference Alignment


Overall Model

- Music Encoder: Obtains the Mixed Tokens and Dual-Track Tokens from audio, which encapsulates sufficient semantic and acoustic details that are necessary for reconstructing
- LeLM: Servers as the "brain" of the system, modeling both Mixed Tokens and Dual-Track Tokens conditioned on diverse inputs (lyrics, text descriptions, audio prompts)
- Music Decoder: Uses a latent diffusion model to generate high-quality music waveforms from the tokens



- LeLM: Model Mixed Tokens & Dual-Track Tokens without mutual interference by hierarchical modeling
 - □ Language Model "music structure creation"
 - > Predicts Mixed Tokens to capture high-level musical structure (melody, rhythm, arrangement)
 - ☐ AR Decoder "musical detail refinement"
 - > Predicts Dual-Track Tokens on top of language model outputs to refine fine-grained details of vocals & accompaniment
 - **Delay Step:** Provides additional context for local detail modeling without significantly increasing the sequence length.

- Music Codec: High-compression, high-fidelity music coding and decoding
 - ☐ Music Encoder separate encoding of vocals & accompaniment
 - ➤ Use MuEncoder to extract representations from each track independently
 - ➤ Then discretize into tokens (Dual-Track Tokens) by RVQ
 - ☐ Music Decoder joint decoding of vocals & accompaniment
 - ➤ Use a Latent Diffusion Model (LDM) conditioned on Dual-Track Tokens to recover high-quality waveform efficiently
 - □ Achieves high-fidelity reconstruction of 48kHz stereo music at an ultra-low bitrate of 0.7 kbps (operating at 25Hz frame rate)

- Multi-Preference Alignment: align multiple preference dimensions into one model via DPO + interpolation
 - ☐ Semi-automatic construction of preference data
 - ➤ Lyric Alignment → phoneme error number via ASR model
 - ▶ Prompt Consistency → audio-text similarity via MuLan model
 - ➤ Musicality → score from a pre-trained reward model
 - ☐ Training & Alignment
 - > Run DPO individually on 3 preference dimensions
 - \triangleright Then interpolate parameters \rightarrow achieve a balanced trade-off across all preferences
- Three-Stage Training Paradigm: reduce the mutual influence between different types of tokens & align multi-dimensional human preference
 - **□** Stage 1 Pre-training
 - ➤ Only train Language Model → global structure, diversity and harmony
 - **■** Stage 2 Modular Extension Training
 - ➤ Only train AR Decoder → fine-grained local details, sound quality, musicality (keep Stage-1 knowledge untouched)
 - □ Stage 3 Multi-Preference Alignment
 - ➤ Train entire LeLM with DPO → align all human preferences into final model

LeVo: High-Quality Song Generation with Multi-Preference Alignment

Objective Evaluation

- ☐ Lowest PER (phoneme error rate)
- ☐ Highest text—audio similarity (MuQ-T)
- ☐ Highest perceived musical aesthetics (Audiobox-Aesthetics scores)

Table 1: Objective results of comparison and ablation systems for song generation. The asterisk (*) denotes that we reproduce SongGen using our training data. The overall first and second results are marked with **bold** and <u>underline</u>, respectively.

Models	_{FAD↓}	MuQ-T↑	MuQ-A↑	PER ↓	(Content	Scores	
1/10/10/10		1120 & 1	1120 € 12		CE	CU	PC	PQ
Suno-V4.5	2.59	0.34	0.84	21.6	7.65	7.86	5.94	8.35
Haimian	2.97	0.22	_	11.8	7.56	7.85	5.89	8.27
Mureka-O1	2.50	0.33	$\boldsymbol{0.87}$	7.2	7.71	7.83	$\boldsymbol{6.39}$	8.44
YuE	2.65	0.27	0.74	36.4	7.13	7.39	5.90	7.77
DiffRhythm	4.86	0.26	0.51	12.3	6.65	7.32	5.71	7.77
ACE-Step	2.69	0.28	_	37.1	7.37	7.52	6.26	7.85
SongGen*	2.68	0.25	0.80	27.5	7.63	7.79	5.94	8.37
LeVo	2.68	0.34	0.83	7.2	7.78	7.90	6.03	8.46
w/o Train stage 2	2.71	0.28	0.82	17.5	7.76	7.81	5.69	8.44
w/o AR decoder	2.83	0.27	0.80	26.0	7.54	7.71	5.61	8.32
w/o Dual-track	2.83	0.33	0.83	11.0	7.72	7.88	5.82	8.43
w/o DPO	2.60	0.31	0.82	10.6	7.70	$\overline{7.86}$	5.89	8.39

LeVo: High-Quality Song Generation with Multi-Preference Alignment

Subjective Evaluation

- ☐ Highest lyric accuracy among all open-source and commercial models
- Overall quality (OVL), vocal melodic attractiveness (MEL), vocal—instrument harmony (HAM) and audio quality (AQ) surpassing all open-source models and several commercial systems, second only to Suno

Table 2: Subjective results of comparison and ablation systems for song generation. The asterisk (*) denotes that we reproduce SongGen using our training data. The overall first and second results are marked with **bold** and <u>underline</u>, respectively.

Models			MOS	$\mathbf{S} \uparrow$		
1,104015	OVL	MEL	HAM	SSC	AQ	LYC
Suno-V4.5	3.59	4.10	3.93	4.19	4.00	3.17
Haimian	3.05	3.51	3.55	3.62	3.87	3.32
Mureka-O1	3.42	3.88	3.89	4.14	3.87	3.32
YuE	2.45	3.04	2.94	3.53	3.08	2.41
DiffRhythm	2.60	3.18	3.22	3.55	3.09	2.69
ACE-Step	2.26	3.02	3.30	3.21	2.36	2.22
SongGen*	2.91	3.43	3.44	3.66	3.69	2.84
LeVo	3.42	3.93	3.90	4.09	3.96	3.38
w/o Train stage 2	3.29	3.76	3.77	3.80	3.96	2.91
w/o AR decoder	2.93	3.44	3.34	3.59	3.71	2.74
w/o Dual-track	3.25	3.82	3.84	3.96	3.86	3.18
w/o DPO	3.18	3.71	3.76	3.97	3.93	3.18

Metric Notation

•OVL: Overall Quality

•MEL: Vocal Melodic Attractiveness

•HAM: Vocal-Instrument Harmony

•SSC: Song Structure Clarity

•AQ: Audio Quality

•LYC: Lyric Accuracy

LeVo: High-Quality Song Generation with Multi-Preference Alignment

Music Codec Performance

- ☐ Mixed Tokens: best reconstruction at **0.35 kbps**, comparable to **2-layer XCodec** (**1 kbps**)
- □ Dual-Track Tokens: best reconstruction at **0.7 kbps**, surpassing **4-layer XCodec (2 kbps)**

	_	_			-	
Method	CodeBook	Tokenrate (tps)	Bitrate (kbps)	VISQOL↑	SPK_SIM↑	WER (%)
Original music	_				_	10.92
SemantiCodec	1 x 32768	25	0.375	1.92/1.92	0.52	120.17
	1 x 16384	100	1.40	1.96/1.96	0.68	55.17
WavTokenizer	1 x 4096	40	0.48	2.93/2.93	0.49	101.49
wav Tokemizer	1 x 4096	75	0.90	3.05/3.05	0.56	86.19
	1 x 1024	50	0.50	3.04/3.04	0.53	85.10
XCodec	2 x 1024	50	2.00	3.30/3.30	0.79	55.37
ACouec	4 x 1024	50	2.00	3.38/3.38	0.63	36.32
	8 x 1024	50	4.00	3.58/3.58	0.72	26.42
MuCodec	1 x 16384	25	0.35	3.17/3.18	0.75	36.21
Mucoucc	4 x 10000	25	1.33	3.45/3.46	0.87	24.26
Music Codec	1 x 16384	25	0.35	3.27/3.27	0.78	38.22
	2 x 16384	25	0.70	3.34/3.34	0.82	33.43
(Mixed)	4 x 16384	25	1.40	3.52/3.53	0.84	28.92
Music Codec (Dual-Track)	16384+16384	25	0.70	3.43/3.44	0.82	31.54

- Ablation study Framework
 - ☐ Train Stage 2 + AR Decoder prevent interference between Mixed & Dual-Track Tokens
 - > w/o Stage 2: all metrics drop, esp. lyric accuracy
 - > w/o AR Decoder: further overall degradation
 - ☐ Parallel prediction balances sound quality, intelligibility, and harmony
 - > w/o Dual-Track: sharp decline in sound quality, intelligibility, and musicality

Models	_{FAD↓}	MuQ-T↑	MuQ-A↑	PER ↓	Content Scores ↑ Mode		Models			MOS	S ↑				
11204015		1,144 2 1	1124 212	v	CE	CU	PC	PQ		OVL	MEL	HAM	SSC	AQ	LYC
Suno-V4.5	2.59	0.34	0.84	21.6	7.65	7.86	5.94	8.35	Suno-V4.5	3.59	4.10	3.93	4.19	4.00	3.17
Haimian	$\overline{2.97}$	0.22	_	11.8	7.56	7.85	5.89	8.27	Haimian	3.05	3.51	3.55	3.62	3.87	3.32
Mureka-O1	2.50	0.33	0.87	7.2	7.71	7.83	6.39	8.44	Mureka-O1	3.42	3.88	3.89	4.14	3.87	3.32
YuE	2.65	0.27	0.74	36.4	7.13	7.39	5.90	7.77	YuE	2.45	3.04	2.94	3.53	3.08	2.41
DiffRhythm	4.86	0.26	0.51	12.3	6.65	7.32	5.71	7.77	DiffRhythm	2.60	3.18	3.22	3.55	3.09	2.69
ACE-Step	2.69	0.28	_	37.1	7.37	7.52	6.26	7.85	ACE-Step	2.26	3.02	3.30	3.21	2.36	2.22
SongGen*	2.68	0.25	0.80	27.5	7.63	7.79	5.94	8.37	SongGen*	2.91	3.43	3.44	3.66	3.69	2.84
LeVo	2.68	0.34	0.83	7.2	7.78	7.90	6.03	8.46	LeVo	3.42	3.93	3.90	4.09	3.96	3.38
w/o Train stage 2	2.71	0.28	0.82	17.5	7.76	7.81	5.69	8.44	w/o Train stage 2	3.29	3.76	3.77	3.80	3.96	2.91
w/o AR decoder	2.83	0.27	0.80	26.0	$\overline{7.54}$	7.71	5.61	8.32	w/o AR decoder	2.93	3.44	3.34	3.59	3.71	2.74
w/o Dual-track	2.83	0.33	0.83	11.0	7.72	7.88	5.82	8.43	w/o Dual-track	3.25	3.82	3.84	3.96	3.86	3.18
w/o DPO	2.60	0.31	0.82	10.6	7.70	7.86	5.89	8.39	w/o DPO	3.18	3.71	3.76	3.97	3.93	3.18

- Ablation study DPO strategy
 - ☐ Proposed multi-preference alignment improves
 - Musicality (Content Scores, OVL, MEL)
 - ➤ Lyric Alignment (PER, LYC)
 - ➤ Instruction Following (MuQ-T, MuQ-A)
 - ☐ Single-preference DPO: targeted enhancement
 - Strategy 1 \rightarrow PER Strategy 2 \rightarrow MuQ-T/A Strategy 3 \rightarrow Content Scores
 - ☐ Mixed training improves multiple aspects
 - ☐ Interpolation model best balances all dimensions

Models	FAD↓ MuQ-T↑		MuQ-A↑	PER ↓		Content Scores ↑			
				CE	CU	PC	PQs		
w/o DPO	2.60	0.31	0.82	10.6	7.70	7.86	5.89	8.39	
with Strategy 1 with Strategy 2 with Strategy 3	2.85 2.89 2.63	0.30 0.34 0.32	0.81 0.83 0.82	6.5 10.3 11.2	7.72 7.75 7.78	7.86 7.87 7.93	5.97 5.96 6.16	$8.42 \\ 8.43 \\ \underline{8.45}$	
Mixed Training LeVo (Interpolation)	$\begin{vmatrix} 2.75 \\ 2.68 \end{vmatrix}$	0.33 0.34	0.83 0.83	$7.5 \\ 7.2$	7.76 7.78	7.89 7.90	$\frac{6.04}{6.03}$	8.43 8.46	

Models	MOS↑									
11204025	OVL	MEL	HAM	SSC	AQ	LYC				
Suno-V4.5	3.59	4.10	3.93	4.19	4.00	3.17				
Haimian	3.05	3.51	3.55	3.62	3.87	3.32				
Mureka-O1	3.42	3.88	3.89	4.14	3.87	3.32				
YuE	2.45	3.04	2.94	3.53	3.08	2.41				
DiffRhythm	2.60	3.18	3.22	3.55	3.09	2.69				
ACE-Step	2.26	3.02	3.30	3.21	2.36	2.22				
SongGen*	2.91	3.43	3.44	3.66	3.69	2.84				
LeVo	3.42	3.93	3.90	4.09	3.96	3.38				
w/o Train stage 2	3.29	3.76	3.77	3.80	3.96	2.91				
w/o AR decoder	2.93	3.44	3.34	3.59	3.71	2.74				
w/o Dual-track	3.25	3.82	3.84	3.96	3.86	3.18				
w/o DPO	3.18	3.71	3.76	3.97	3.93	3.18				

Thanks!

Listen to Samples

Source code: https://github.com/tencent-ailab/songgeneration

Hugging Face Space: https://huggingface.co/spaces/waytan22/SongGeneration-LeVo

Contact: leis21@mails.tsinghua.edu.cn