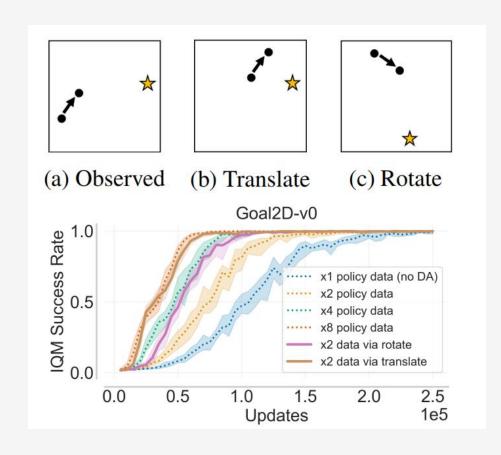
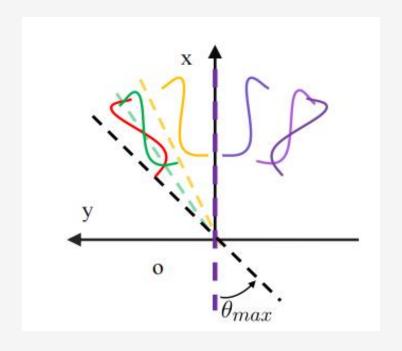


Time Reversal Symmetry for Efficient Robotic Manipulations in Deep Reinforcement Learning

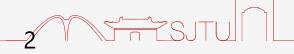
Yunpeng Jiang¹, Jianshu Hu¹, Paul Weng², Yutong Ban¹


¹Global College, Shanghai Jiao Tong University

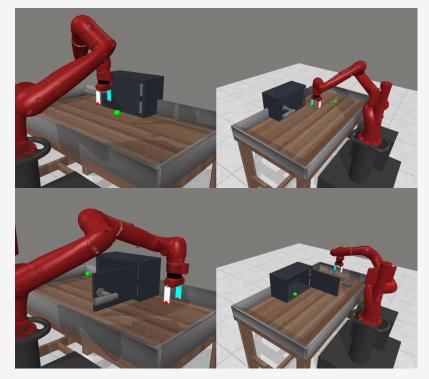

²Digital Innovation Research Center, Duke Kunshan University

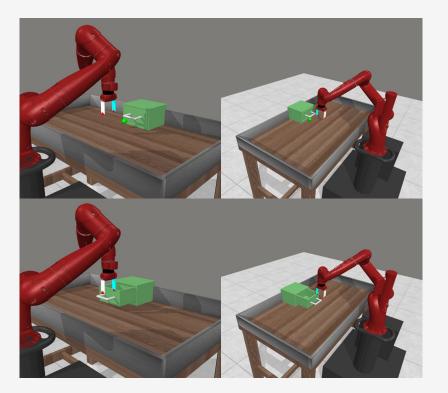
饮水思源•爱国荣校

Symmetry in Deep RL (spatial)



Reflection


Given the effectiveness of spatial symmetry, can we leverage symmetry in time domain to boost the learning efficiency of deep RL?


Time Reversal Symmetry

- Observation: Tasks often exist as a pair.
- Examples: door opening/closing, drawer opening/closing.

door opening/closing

drawer opening/closing

Time Reversal Symmetry

- Observation: Tasks often exist as a pair.
- Examples: plate slide side (back), window opening/closing.

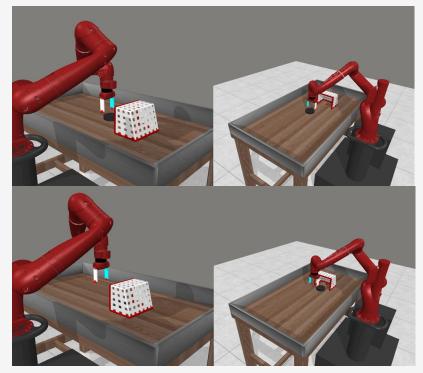
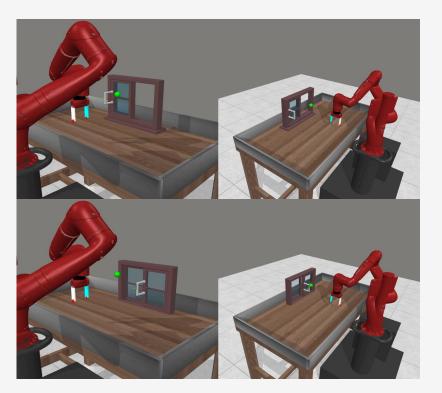
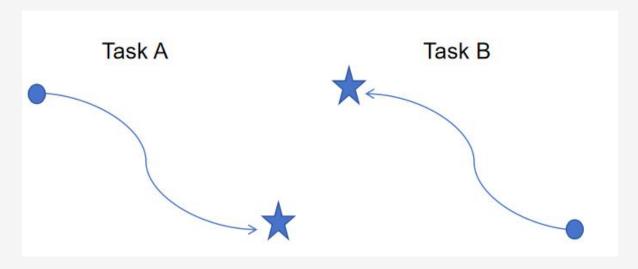



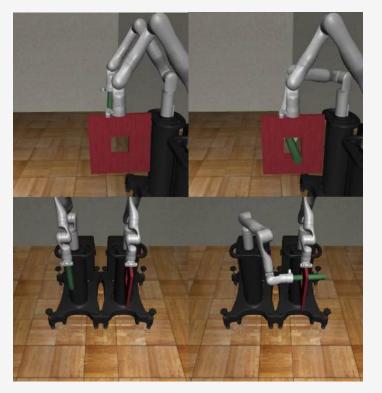
plate slide side (back)



window opening/closing

Time Reversal Symmetry

- Hypothesis: For some task pair (A, B), task A can be solved more quickly with reversed trajectories from task B.
- Objective of our work: Develop a method that enhances data efficiency of DRL agents with time reversal symmetry.
- Outcome: An agent that can solve two/multiple tasks simultaneously and much faster with the help of time reversal symmetry.

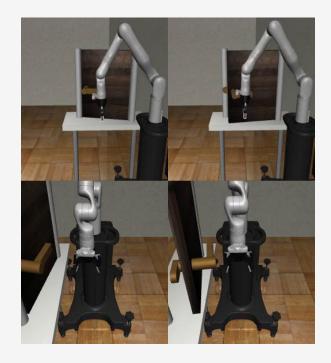

Full Time Reversal Symmetry

• For one transition (s_t, a_t, s_{t+1}) and the transition function T, if there exists $\overline{a_t}$ such that $T(s_{t+1}|s_t, a_t) = T(s_t|s_{t+1}, \overline{a_t})$, we say that the state pair (s_t, s_{t+1}) satisfies full time reversal symmetry.

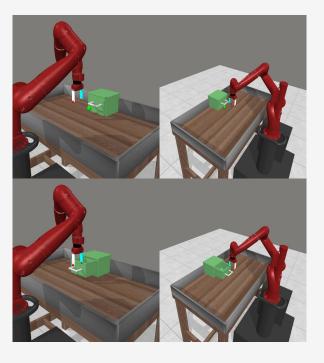
door opening/closing outward

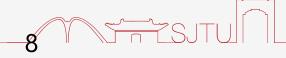
peg insertion/removal

Proposed Technique1: Trajectory Reversal Augmentation with Dynamics-Aware Filtering



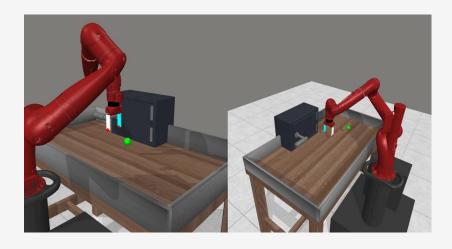
- Reverse transitions: $(s_t, a_t, s_{t+1}) \rightarrow (s_{t+1}, \overleftarrow{a_t}, s_t)$.
- Core idea: data augmentation using reversed transitions.
- Filter out fake (irrversible) transitions.
- 1. Train an inverse dynamics model: output $\overleftarrow{a_t}$ with s_{t+1} and s_t as inputs.
- 2. Train a forward dynamics model: output \hat{s} with s_{t+1} and $\overleftarrow{a_t}$ as inputs.
- 3. Filter based on the error between s_t and \hat{s} .


What if there are lots of irreversible transitions? (き) ナ海ズダ



door opening/closing inward

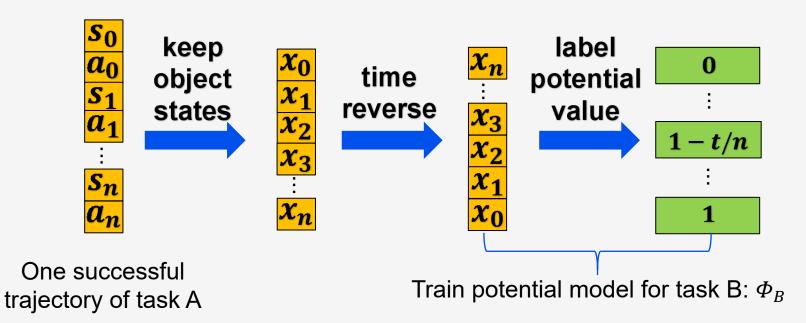
drawer opening/closing


- The robotic arm is opening the door/drawer by grasping and pulling it while closing the door/drawer by pushing it, which creates irreversible transitions.
- However, we can observe that the trajectories of the objects are actually reversible.
- We need to find out how to leverage this property.

Partial Time Reversal Symmetry

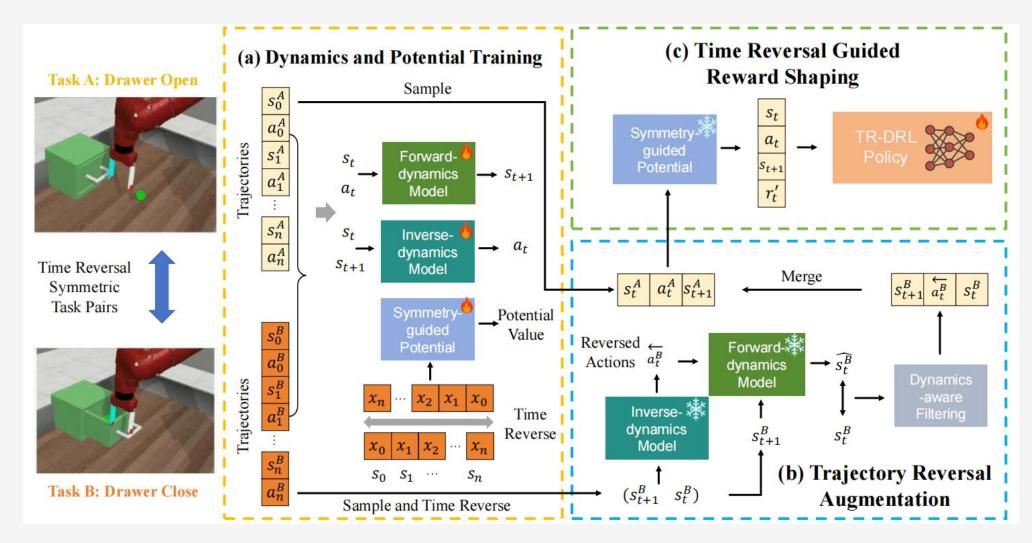
- Assume that a state s can be decomposed into two parts (x, y).
- For one state pair (s_t, s_{t+1}) and the transition function T, if there exist (y_t, y_{t+1}) and $(\overline{a_t}, \overline{a_{t+1}})$ such that $T(s_{t+1}|s_t, a_t) = T(\overline{s_t}|\overline{s_{t+1}}, a_t)$, we say that the state pair (s_t, s_{t+1}) satisfies partial time reversal symmetry.
- Intuitively, x can be the part that is reversible (eg. containing object state information).

door opening



door closing

Proposed Technique2: Time Reversal Symmetry Guided Reward Shaping



- Core idea: reward shaping using reversed trajectories.
- Use reversed trajecotries of object states (reversible part) to relabel the reward terms.
- 1. Train a potential model: output potential value $\Phi(x_t)$ with x_t as input.
- 2. The reward of one transition (s_t, a_t, s_{t+1}) can be reshaped as $r_t + \Phi(x_{t+1}) \Phi(x_t)$.

Method Diagram of TR-DRL

Experimental Results in Robosuite

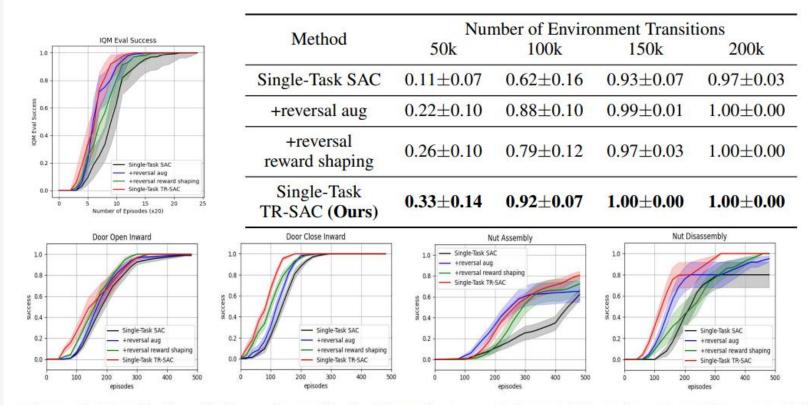
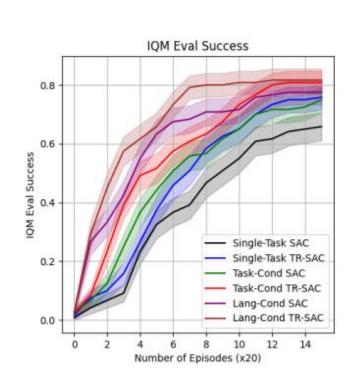



Figure 4: **Results for single-task setting in 10 environments from Robosuite.** Top: Plots and table for IQM of success rate. Bottom: Curves of success rate in two pair of reversible tasks. "Single-Task SAC": baseline; "+reversal aug": trajectory reversal augmentation with dynamics-aware filtering; "+reversal reward shaping": time reversal symmetry guided reward shaping.

Experimental Results in MetaWorld (MT50)

Method	Number of 50k	Environment 100k	Transitions 150k
Single-Task SAC	0.33±0.05	0.55±0.05	0.66±0.05
Task-Cond SAC	0.44 ± 0.05	0.65 ± 0.05	0.75±0.04
Lang-Cond SAC	0.63 ± 0.05	0.72 ± 0.05	0.78±0.04
Single-Task TR-SAC (Ours)	0.38±0.05	0.65±0.05	0.76±0.04
Task-Cond TR-SAC (Ours)	0.52±0.05	0.73±0.04	0.81±0.04
Lang-Cond TR-SAC (Ours)	0.66±0.05	0.81±0.04	0.82±0.04

Figure 6: **IQM of success rate for multi-task settings in 12 pair of reversible tasks in MT50 of Meta-World.** "Task-Cond" and "Lang-Cond" are short for "task-conditioned" and "language-conditioned" respectively.

Conclusion

- We propose TR-DRL, a framework leveraging time reversal symmetry to enhance sample efficiency of DRL algorithms.
- Key contributions include a novel notion of partial time reversal symmetry, trajectory reversal augmentation with dynamics-aware filtering, and symmetry-guided reward shaping.
- Experiments on Robosuite and Metaworld demonstrate improved agent performance and learning efficiency.

Thanks for watching

• If our work interests you, you may explore further with more video demonstrations on our project website and apply our method using our open-source code repository.

project website

code repository