DualFocus: Depth from Focus with Spatio-Focal Dual Variational Constraints

Sungmin Woo, Sangyoun Lee

Depth-from-Focus (DFF)

- Input data: Multi-focus images captured at different focal distances
- Output data: Depth map estimated by analyzing focus patterns
- Physical basis of DFF:
 - A scene point looks sharpest when its depth aligns with the focal plane.
 - This focus-sharpness cue enables accurate and interpretable depth.

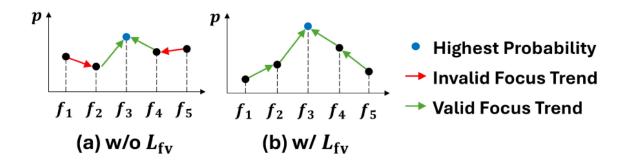
Multi-focus images

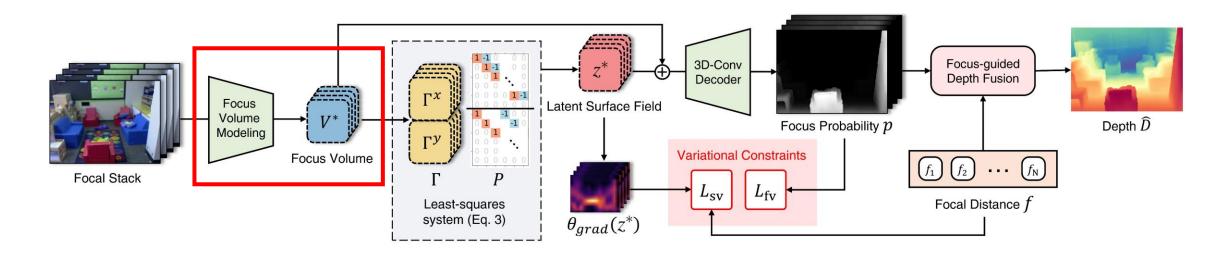
Motivation

• **Limitation:** Existing DFF methods mainly infer depth from appearance features without explicitly modeling the optical structure underlying focus transitions, which makes them prone to texture-induced artifacts and inconsistent sharpness cues.

• Idea: Our model leverages focus-dependent gradient variations that emerge uniquely across focal planes, capturing the physical relationship between focus and sharpness.

Spatio-Focal Dual Variational Constraints

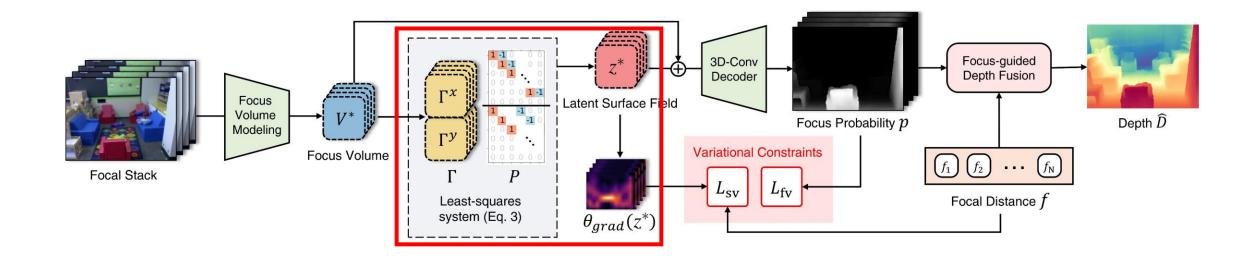

1. Spatial variational constraint

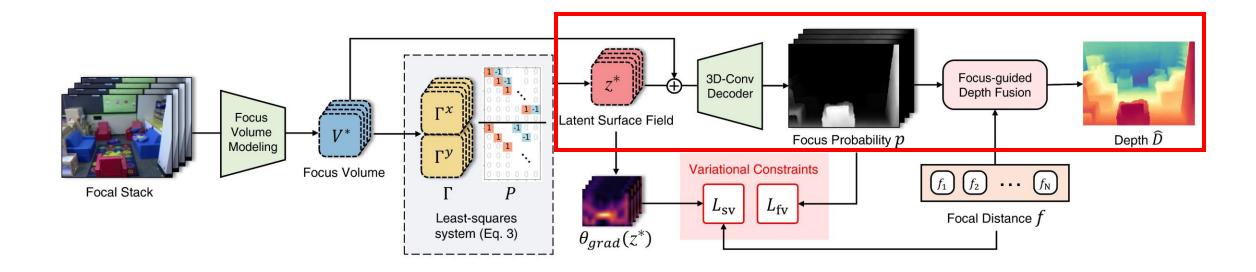

- Our model predicts the first-order differences between neighboring pixels, representing local depth gradients that capture how depth varies across the scene.
- Sharp in-focus regions tend to show coherent, strong gradients, while blurred out-of-focus regions exhibit diffused or noisy patterns.
- By comparing these spatial gradient patterns across the stack, the model learns to discern reliable depth cues from spurious texture signals.

Spatio-Focal Dual Variational Constraints

2. Focal variational constraint

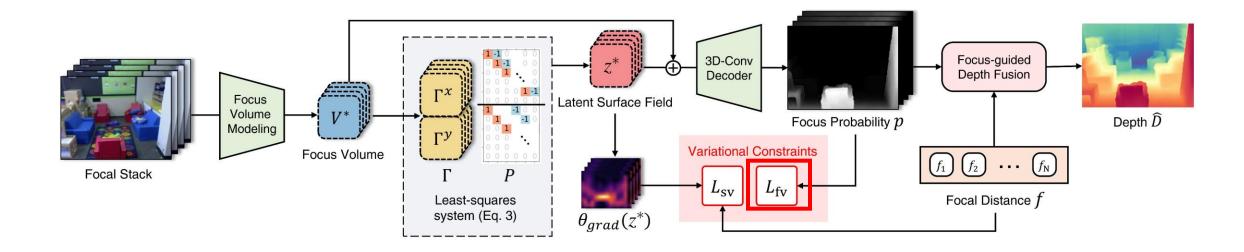
- For each pixel, our model encourages a unimodal and bidirectionally monotonic distribution of focus probabilities along the focal axis.
- It ensures that the predicted focus confidence peaks at the in-focus plane and decreases smoothly as the focal distance diverges in either direction.



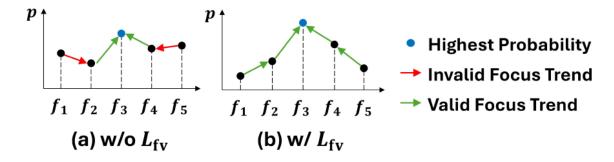

$$V_n^* = \begin{cases} [V_n, V_{n+1} - V_n], & n = 1, \dots, N-1 \\ [V_n, V_n - V_{n-1}], & n = N \end{cases} V \in \mathbb{R}^{H \times W \times C_1 \times N}$$

$$V^* \in \mathbb{R}^{H \times W \times 2C_1 \times N}$$

- Feature maps from N focal images are stacked along the focal axis to form a 4D focus volume V.
- Focal differences are computed and concatenated to obtain the augmented focus volume V^* for focus analysis.



- Our model first predicts depth gradients Γ for each focal plane.
- To ensure geometric consistency, we solve a least-squares system that reconstructs an integrable latent surface field from these gradients. A learnable layer $\theta_{\rm grad}$ then predicts the gradient of this reconstructed surface, which is supervised to match the ground-truth depth gradient ($L_{\rm sv}$), only in reliable in-focus regions.



- The reconstructed surface features are fused with the focus volume to predict a focus probability map, which represents the likelihood of each focal plane being in focus for every pixel.
- The final depth is then obtained as a weighted sum of focal distances using these probabilities.

$$\widehat{D}(\mathbf{x}) = \sum_{n=1}^{N} p_n(\mathbf{x}) f_n$$

 The focal variation loss encourages each pixel's focus probability to rise toward the in-focus plane and fall afterward, ensuring physically consistent and coherent depth estimation.

Experimental Results

Model	Type	RMSE↓	AbsRel ↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$
ZoeDepth [†] [3]	SIDE	0.270	0.075	0.955	0.995	0.999
VPD [31]	SIDE	0.254	0.069	0.964	0.995	0.999
Marigold [11]	SIDE	0.224	0.055	0.964	0.991	0.998
ECoDepth [19]	SIDE	0.218	0.059	0.978	0.997	0.999
Depth Anything [30]	SIDE	0.206	0.056	0.984	0.998	1.000
DefocusNet [15]	DFD	0.493	-	-	-	-
HybridDepth [6]	DFF	0.128	0.026	0.995	1.000	1.000
DFV [‡] [29]	DFF	0.094	0.020	0.998	1.000	1.000
Ours	DFF	0.075	0.013	0.999	1.000	1.000

Quantitative Results on the NYU Depth v2 Dataset

Experimental Results

Model	MSE ↓	RMSE↓	AbsRel↓	SqRel↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	Bump↓
RDF [10]	0.112	0.322	0.46	0.240	0.395	0.646	0.761	1.54
DDFF [9]	0.033	0.167	0.17	0.036	0.728	0.900	0.963	1.74
Defocus-Net [15]	0.022	0.134	0.15	0.036	0.811	0.933	0.966	2.52
DFV [29]	0.020	0.129	0.13	0.024	0.819	0.947	0.980	1.43
Ours	0.015	0.112	0.13	0.022	0.829	0.948	0.980	1.31

Quantitative Results on the FoD500 Dataset

Model	MSE ↓	$RMSE\downarrow$	AbsRel↓	$SqRel \downarrow$	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	Bump↓
RDF [10]	91.8×10^{-4}	0.0941	1.00	0.1394	0.156	0.331	0.475	1.33
DDFF [9]	8.9×10^{-4}	0.0276	0.24	0.0095	0.613	0.887	0.965	0.52
Defocus-Net [15]	8.6×10^{-4}	0.0255	0.17	0.0060	0.726	0.942	0.979	0.46
DFV [29]	5.7×10^{-4}	0.0213	0.17	0.0063	0.767	0.942	0.981	0.42
HybridDepth [6]	5.1×10^{-4}	0.0200	0.17	0.0060	0.789	0.947	0.981	0.47
Ours	4.7×10^{-4}	0.0194	0.16	0.0056	0.800	0.954	0.982	0.40

Quantitative Results on the DDFF 12-Scene Dataset

Zero-Shot Transfer

Model	Туре	RMSE↓	AbsRel↓	#Params
ZoeDepth [†] [3] DistDepth [27] ZeroDepth [7] Depth Anything [30]	SIDE	0.61	0.33	335M
	SIDE	0.94	0.45	69M
	SIDE	0.62	0.37	233M
	SIDE	0.53	0.32	336M
DFV [29]	DFF	0.43	0.51	20M
HybridDepth [6]	DFF	0.29	0.42	67M
Ours	DFF	0.28	0.40	27M

Zero-Shot Evaluation on the ARKitScenes dataset

Ablation Study

Method	RMSE↓	log RMSE↓	AbsRel↓	SqRel↓
w/o spatio-focal variational constraints	0.094	0.027	0.020	0.0038
w/o spatial variational constraints	0.090	0.025	0.018	0.0032
w/o focal variational constraints	0.078	0.022	0.014	0.0022
w/ direct supervision on gradients Γ w/o sharpness weight q w/ blurness weight $(1-q)$	0.083	0.023	0.015	0.0026
	0.077	0.022	0.014	0.0022
	0.079	0.022	0.014	0.0025
Ours	0.075	0.020	0.013	0.0021

Ablation Study on the NYU Depth v2 Dataset