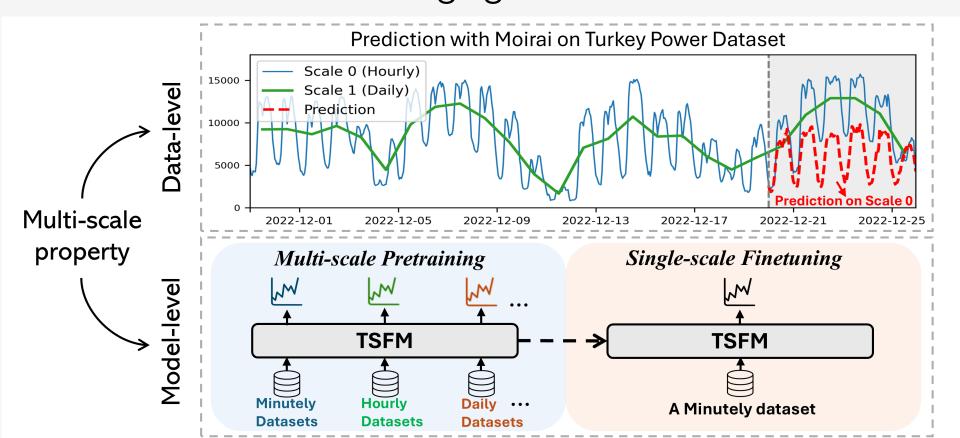
Multi-Scale Finetuning for Encoder-based Time Series Foundation Models

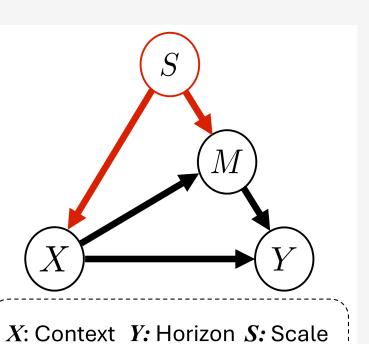

Zhongzheng Qiao^{1,2,3}, Chenghao Liu⁴, Yiming Zhang¹, Ming Jin⁵, Quang Pham⁴, Qingsong Wen⁶, P.N.Suganthan⁷, Xudong Jiang¹, Savitha Ramasamy^{2,3}

¹NTU, ²I2R A*STAR, ³CNRS@CREATE, ⁴Salesforce Al Research, ⁵Griffith Univ, ⁶Squirrel Ai Learning, ⁷Qatar Univ

NeurIPS 2025, San Diego, USA

1. The Challenge: Naive Finetuning

Time Series Foundation Models (TSFMs) show impressive zero-shot performance. However, adapting them to downstream tasks remains challenging.



Why Naive Finetuning Fails:

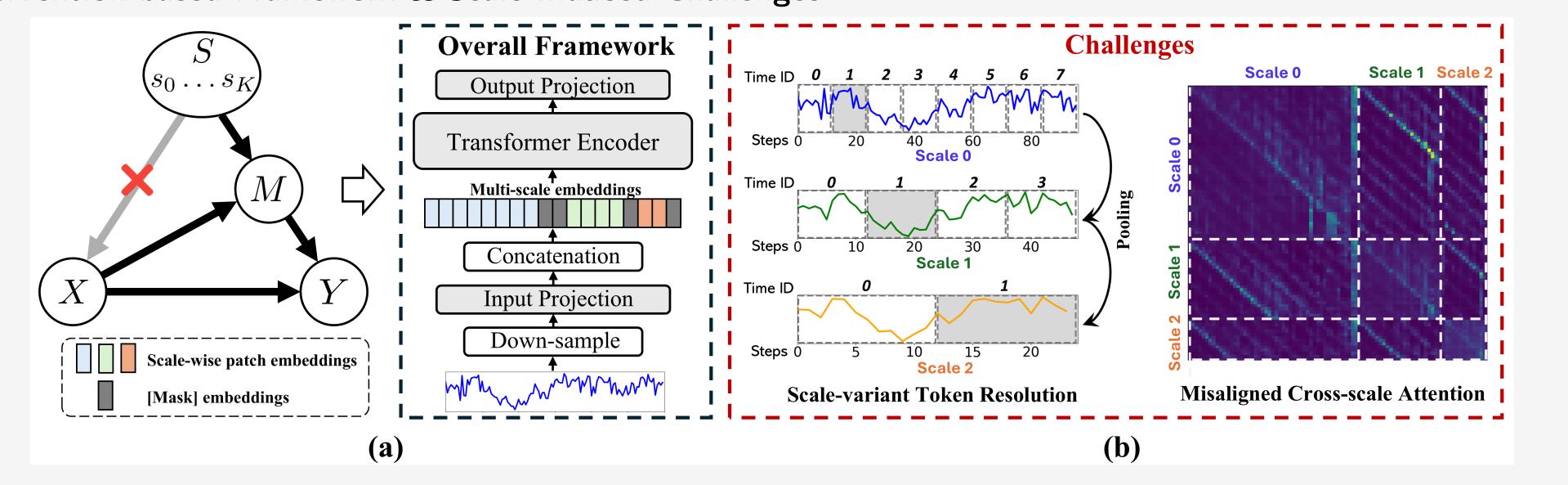
- Direct finetuning (or linear probing) focuses only on the original scale.
- ► It ignores the inherent **multi-scale nature** of time series data and TSFMs.
- ► Consequence: Overfitting to patterns at the original scale and underutilizing the pre-trained capabilities.

2. A Causal Perspective

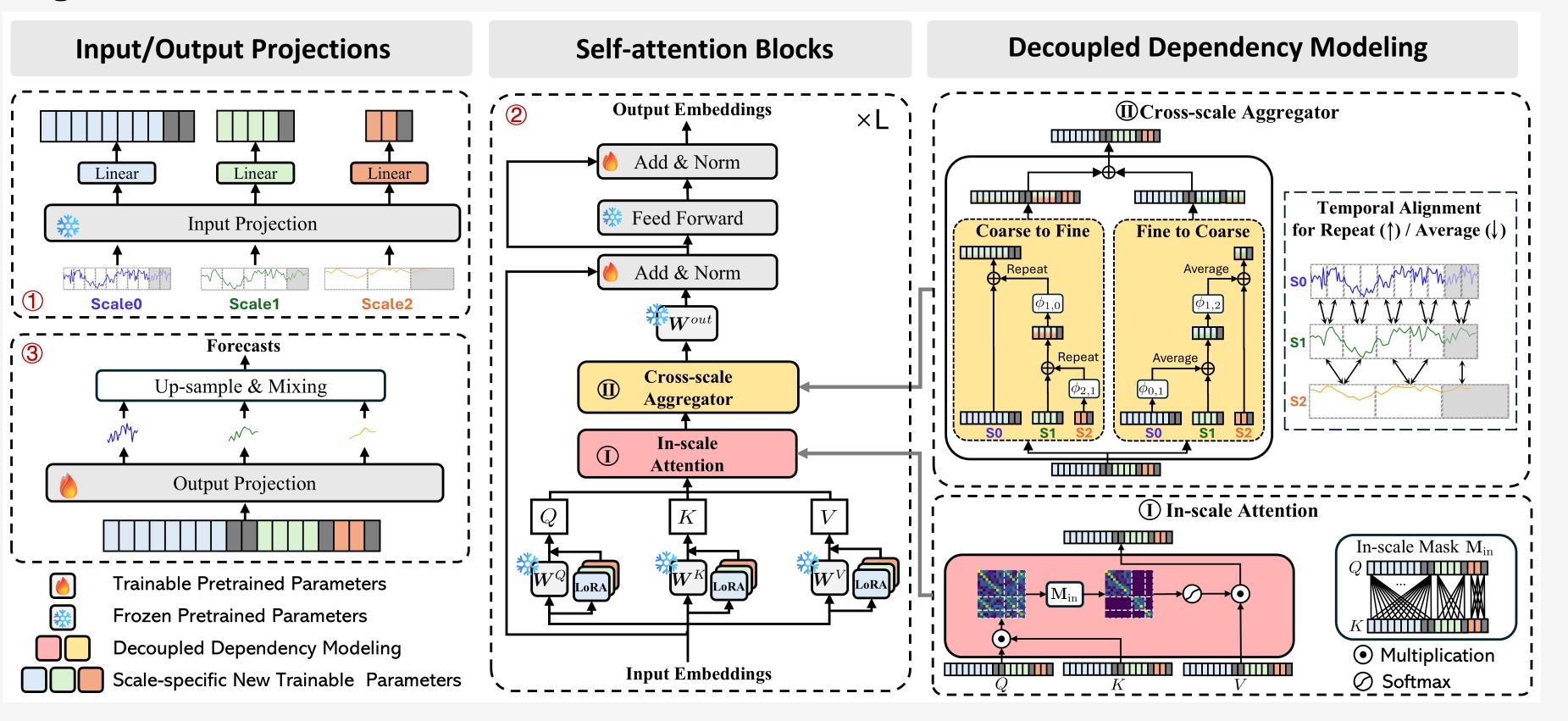
We model the finetuning process using a **Structural Causal Model (SCM)**:

M: TSFM Activated Knowledge

- Scale (S) acts as a confounder affecting both Input (X) and Activated Knowledge (M).
- Naive methods model P(Y|X), capturing spurious correlations.
- Our Goal: Estimate the interventional distribution P(Y|do(X)) via backdoor adjustment.


Key Contributions

- Novel Insight: First work to introduce multi-scale modeling into TSFM finetuning from a causal view.
- ► Method (MSFT): A general framework compatible with encoder-based TSFMs (MOIRAI, MOMENT, UNITS).
- ► **SOTA Results:** Surpasses naive finetuning and deep learning baselines on Long Sequence & Probabilistic Forecasting.


3. MSFT: Multi-Scale Finetuning Framework

We propose MSFT, a plug-and-play framework that explicitly models multiple scales to eliminate the confounding effect of scale.

Intervention-based Framework & Scale-Induced Challenges

Full Design of MSFT:

Three Key Components:

- 1. Scale-Specific Knowledge Activation:
- ▶ Instead of a shared projection, we use **Scale-Specific Adapters** (Linear layers) for input projection.
- ▶ Independent LoRA modules for each scale to adapt attention weights without forgetting pretrained knowledge.

2. Decoupled Dependency Modeling (The Core):

- ► Challenge: Tokens at different scales have misaligned time indices. Direct attention causes spurious correlations.
- ► Solution:
- ▶ In-Scale Attention: Masking M_{in} ensures tokens only attend to their own scale.
- Cross-Scale Aggregator: Explicitly fuses corss-scale information via Coarse-to-Fine (Repeat) and Fine-to-Coarse (AvgPool) branches.

3. Multi-Scale Mixing:

 \triangleright Learnable weights w_i combine predictions from all scales (Ensembling effect).

4. Long Sequence Forecasting

Comparison on ETT, Electricity, Weather datasets. MSFT consistently improves over other finetuning methods.

Method	ETTm1		ETTm2		ETTh1		ETTh2		Electricity		Weather	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DLinear[2023]	0.403	0.419	0.350	0.401	0.456	0.452	0.559	0.515	0.212	0.365	0.265	0.317
PatchTST[2023]	0.387	0.400	0.281	0.326	0.469	0.455	0.387	0.407	0.216	0.304	0.259	0.281
iTransformer 2024a	0.407	0.410	0.288	0.332	0.454	0.448	0.383	0.407	0.178	0.270	0.258	0.278
TimeMixer 2024	0.381	0.395	0.275	0.323	0.447	0.440	0.364	0.395	0.182	0.272	0.240	0.271
SimpleTM [2025]	0.381	0.396	0.275	0.322	0.422	0.428	0.353	0.391	0.166	0.260	0.243	0.271
Moiraismall	0.448	0.409	0.300	0.341	0.416	0.428	0.355	0.381	0.233	0.320	0.268	0.279
+ Full finetuning	0.367	0.382	0.273	0.316	0.415	0.429	0.352	0.378	0.193	0.279	0.228	0.254
+ Linear probing	0.388	0.392	0.295	0.337	0.414	0.427	0.354	0.380	0.212	0.299	0.237	0.260
+ Prompt tuning	0.384	0.391	0.292	0.334	0.414	0.428	0.354	0.381	0.217	0.304	0.235	0.258
+ LoRA	0.370	0.383	0.272	0.314	0.414	0.427	0.354	0.380	0.192	0.279	0.225	0.252
+ AdaLoRA	0.381	0.386	0.273	0.319	0.414	0.427	0.354	0.380	0.191	0.279	0.226	0.252
+ MSFT	0.353	0.377	0.250	0.301	0.412	0.426	0.349	0.375	0.187	0.275	0.216	0.248
Moirai _{Base}	0.381	0.388	0.281	0.326	0.412	0.424	0.356	0.388	0.188	0.274	0.246	0.265
+ Full finetuning	0.368	0.371	0.258	0.307	0.409	0.424	0.357	0.384	0.173	0.263	0.232	0.258
+ Linear probing	0.388	0.387	0.277	0.319	0.409	0.424	0.356	0.387	0.182	0.269	0.229	0.253
+ Prompt tuning	0.378	0.386	0.280	0.325	0.412	0.423	0.360	0.387	0.183	0.271	0.230	0.255
+ LoRA	0.361	0.371	0.259	0.308	0.409	0.423	0.358	0.384	0.173	0.263	0.230	0.258
+ AdaLoRA	0.359	0.371	0.258	0.307	0.410	0.423	0.356	0.384	0.173	0.264	0.236	0.260
+ MSFT	0.332	0.369	0.247	0.305	0.407	0.422	0.352	0.383	0.169	0.260	0.213	0.245
Moment	-	-	-	-	-	-	-	-	-	-	-	-
+ Full finetuning	0.352	0.380	0.260	0.320	0.425	0.440	0.347	0.394	0.224	0.311	0.336	0.310
+ Linear probing	0.355	0.381	0.261	0.321	0.429	0.441	0.347	0.395	0.226	0.313	0.338	0.312
+ Prompt tuning	0.356	0.381	0.261	0.320	0.427	0.440	0.348	0.395	0.226	0.312	0.336	0.310
+ LoRA	0.356	0.381	0.260	0.320	0.425	0.439	0.347	0.395	0.225	0.312	0.335	0.309
+ AdaLoRA	0.355	0.381	0.259	0.319	0.426	0.440	0.347	0.394	0.224	0.311	0.336	0.311
+ MSFT	0.344	0.377	0.255	0.316	0.422	0.436	0.345	0.392	0.221	0.309	0.332	0.307
UniTS	0.713	0.553	0.321	0.355	0.527	0.491	0.406	0.418	0.432	0.488	0.291	0.313
+ Full finetuning	0.395	0.405	0.297	0.338	0.442	0.435	0.386	0.409	0.190	0.283	0.257	0.283
+ Linear probing	0.399	0.409	0.301	0.343	0.445	0.437	0.392	0.412	0.200	0.291	0.274	0.293
+ Prompt tuning	0.431	0.430	0.299	0.341	0.438	0.433	0.386	0.405	0.191	0.287	0.247	0.276
+ LoRA	0.393	0.405	0.296	0.338	0.437	0.434	0.384	0.407	0.188	0.282	0.250	0.279
+ MSFT	0.390	0.403	0.288	0.334	0.434	0.430	0.380	0.405	0.184	0.279	0.242	0.273

5. Probabilistic Forecasting

MSFT is also effective for probabilistic tasks.

Method	Electricity		Solar		Weather		Istanbul Traffic		Turkey Power	
	CRPS	MSIS	CRPS	MSIS	CRPS	MSIS	CRPS	MSIS	CRPS	MSIS
DeepAR[2020]	0.065	6.893	0.431	11.181	0.132	21.651	0.108	4.094	0.066	13.520
TFT[2021]	0.050	6.278	0.446	8.057	0.043	7.791	0.110	4.057	0.039	7.943
PatchTST[2023]	0.052	5.744	0.518	8.447	0.059	7.759	0.112	3.813	0.054	8.978
TiDE[2023]	0.048	5.672	0.420	13.754	0.054	8.095	0.110	4.752	0.046	8.579
Moiraismall	0.072	7.999	0.471	8.425	0.049	5.236	0.173	5.937	0.048	7.127
+ Full finetuning	0.055	6.009	0.395	6.947	0.039	4.477	0.151	6.735	0.040	6.887
+ Linear probing	0.062	6.438	0.369	5.865	0.049	4.785	0.154	4.645	0.047	6.912
+ Prompt tuning	0.066	6.595	0.421	6.936	0.050	4.901	0.154	4.733	0.045	7.042
+ LoRA	0.064	6.753	0.372	6.582	0.039	4.386	0.154	4.753	0.042	7.051
+ AdaLoRA	0.064	6.892	0.366	8.015	0.040	4.496	0.152	4.670	0.041	7.127
+ MSFT	0.047	5.327	0.353	7.706	0.036	4.178	0.141	4.447	0.038	6.810
Moirai _{Base}	0.055	6.172	0.419	7.011	0.041	5.136	0.116	4.461	0.040	6.766
+ Full finetuning	0.049	5.414	0.188	4.292	0.038	5.282	0.120	7.272	0.036	6.712
+ Linear probing	0.055	5.951	0.379	5.645	0.039	4.544	0.104	3.736	0.042	7.259
+ Prompt tuning	0.054	6.024	0.412	6.885	0.040	5.274	0.105	3.987	0.040	6.698
+ LoRA	0.051	5.651	0.382	6.745	0.037	4.904	0.113	4.752	0.036	6.744
+ AdaLoRA	0.054	5.937	0.383	8.825	0.038	4.802	0.110	3.895	0.037	6.762
+ MSFT	0.046	5.199	0.142	3.464	0.035	4.603	0.098	3.685	0.034	6.419

6. Takeaway

Scale Matters: Explicitly Model Scale for Robust Forecasting.

By treating scale as a causal confounder and explicitly modeling it via MSFT, we unlock the true potential of Time Series Foundation Models.

Get the Code:

github.com/zqiao11/MSFT