

Communication-Efficient Diffusion Denoising Parallelization via Reusethen-Predict Mechanism

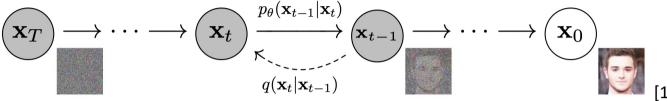
Communication-Efficient Diffusion Denoising Parallelization via Reuse-then-Predict Mechanism

Kunyun Wang · Bohan Li · Kai Yu · Minyi Guo · Jieru Zhao

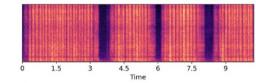
Kunyun Wang

Shanghai Jiao Tong University

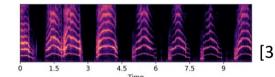
What is Diffusion Model



A pencil scribbling on a notepad.



A kitten mewing for attention.



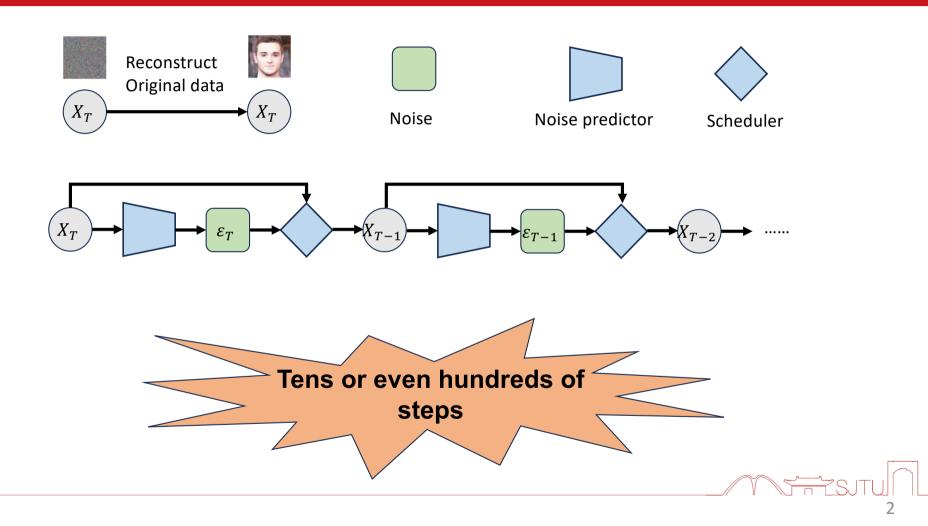
Diffusion models perform denoising process to reconstruct original samples

Diffusion models exhibit strong performance in image, video and audio generation

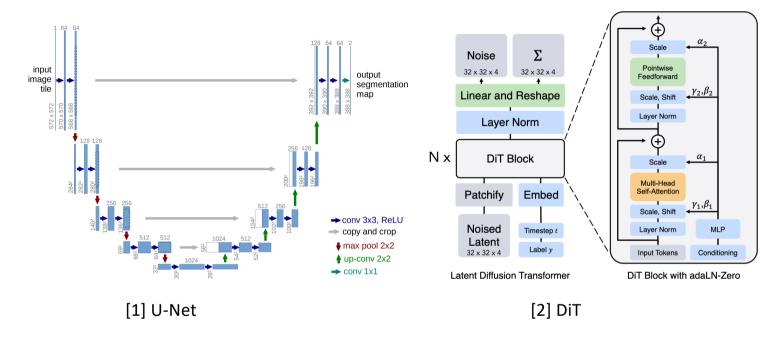
- [1] Denoising Diffusion Probabilistic Models
- [2] WAN: OPEN AND ADVANCED LARGE-SCALE VIDEO GENERATIVE MODELS
- [3] AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining

[2]

What is Diffusion Model



What is Diffusion Model



The noise predictor is typically implemented using architectures such as DiT or U-Net

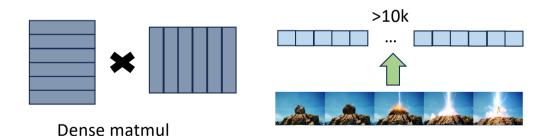
^[1] U-Net: Convolutional Networks for Biomedical Image Segmentation

^[2] Scalable Diffusion Models with Transformers

The high latency of Diffusion model

[1] SVD inference on 4090 for 51s for a 2s short video

[2] CogVideoX inference on 4090 for 91s for a 7s short video



Bidirectional Attention

Thousands of tokens

Multi-step inference

^[1] Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets

^[2] CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer

Similarity across adjacent steps

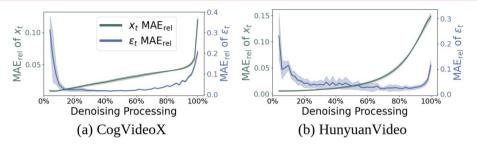
Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

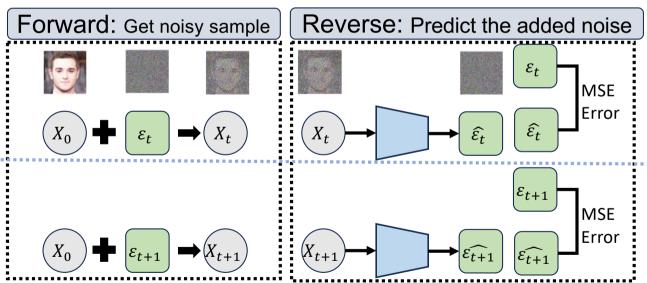
$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\|^{2}$$

6: until converged

[1] The objective in training is to predict the added noise



Adjacent denoising steps exhibit strong similarity, consistent with our analysis.



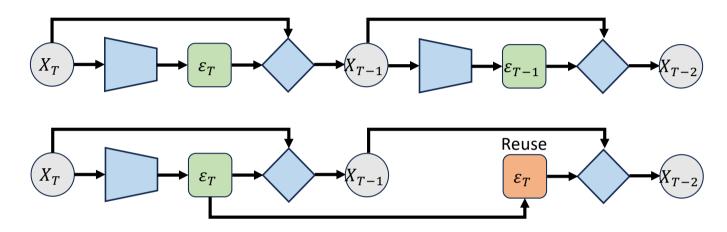
 ε_{t+1} is closed to ε_t in training

 $\widehat{\varepsilon_t}$ is closed to ε_t

 $\widehat{\varepsilon_{t+1}}$ is closed to ε_{t+1}

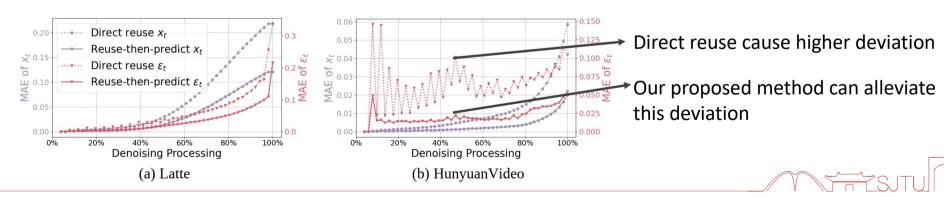
Therefor, $\widehat{\varepsilon_t}$ is closed to $\widehat{\varepsilon_{t+1}}$

Direct Reusing cause cumulative deviation

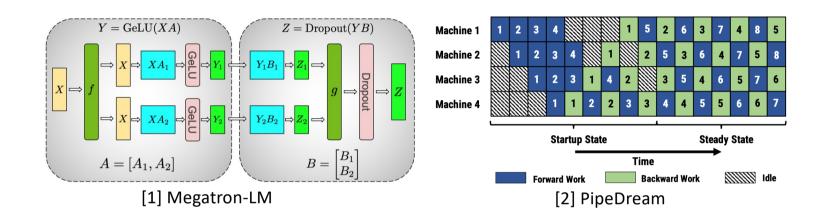


We can directly reuse the generated Noise ε_t

However, this can cause cumulative deviation



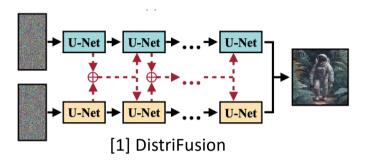
Can we use traditional parallelism to reduce Diffusion latency?



Traditional parallelism is not suitable

- ➤ Data parallelism and Pipeline parallelism are primarily designed to improve throughput, NOT LATENCY
- ➤ Tensor parallelism is less suitable for Diffusion models due to their large activation sizes, especially in commercial hardware.
- [1] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
- [2] PipeDream: Fast and Efficient Pipeline Parallel DNN Training

Specified parallel methods for reducing diffusion latency



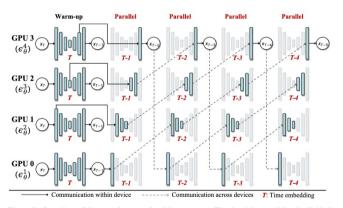
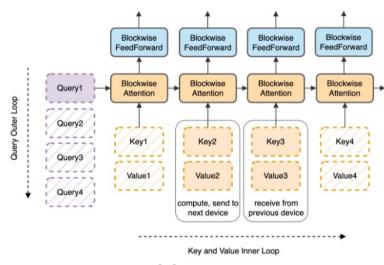


Figure 3: Overview of the asynchronous denoising process. The denoising model ϵ_{θ} is divided into four components $\{\epsilon_n^n\}_{n=1}^4$ for clarity. Following the warm-up stage, each component's input is prepared in advance, breaking the dependency chain and facilitating parallel processing.

[3] AsyncDiff

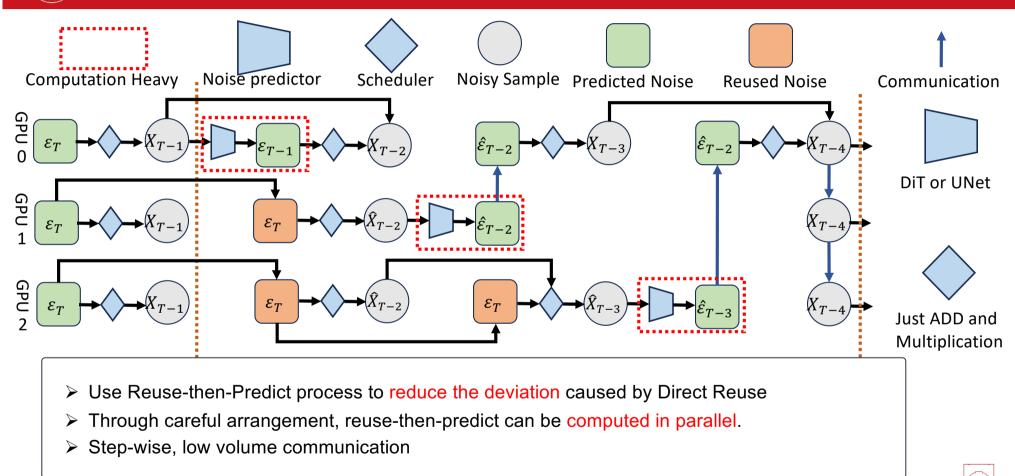
- [1] DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models
- [2] Ring Attention with Blockwise Transformers for Near-Infinite Context
- [3] AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising



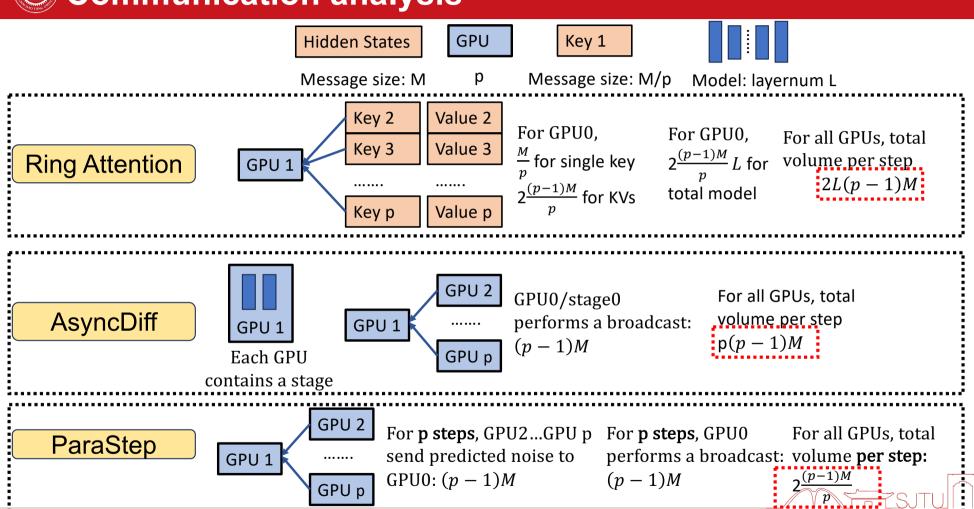
[2] Ring Attention

These methods perform operation-wise, layer-wise, or stage-wise communication to exchange essential tensors, which incurs substantial communication cost.

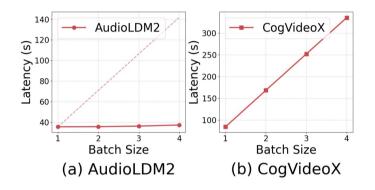
Parallel method based on Reuse-then-Predict



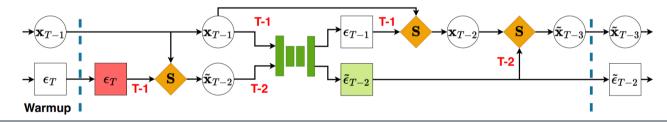
Communication analysis



BatchStep: transform parallelism into batched inference



- ➤ AUDIO: Increasing the batch size does NOT lead to a linear increase in latency indicating a good batching effect.
- ➤ VIDEO: Increasing the batch size leads to a linear increase in latency indicating a poor batching effect.



- > Transform the parallel execution of the noise predictor into a batched inference process on a single device
- > The good batching effect contributes to acceleration.

Experiments: Latency and performance

➤ For Image generation: ParaStep achieves the highest speedup while maintaining competitive quality metrics.

Method	Efficiency		Visual Quality			
Method	Speedup ↑	Latency (s) \downarrow	FID↓	LPIPS↓ PSNR	PSNR ↑	SSIM ↑
SD3 (T = 50)	1	18.75	_	-	-	-
AsyncDiff $(p=2)$	1.61	11.62	7.11	0.2141	16.47	0.7290
xDiT-Pipe (p = 2)	1.50	12.50	6.20	0.1943	16.68	0.7498
ParaStep $(p=2)$	1.68	11.16	5.01	0.1362	18.61	0.8157

Table 1: Speedup and generation quality on image model SD3, with a resolution of 1440×1440 . T is the number of inference steps, and p is the degree of parallelism.

Experiments: Latency and performance

➤ For Video generation: ParaStep achieves the highest speedup while maintaining competitive quality metrics.

Method	Efficiency		Visual Quality			
	Speedup ↑	Latency (s) \downarrow	VBench ↑	LPIPS ↓	PSNR ↑	SSIM ↑
SVD (14 frames, 1024×576)						
SVD (T = 50)	1	51.04	42.00	_	-	-
AsyncDiff $(p = 2)$	1.37	37.36	41.75	0.0790	25.99	0.8366
AsyncDiff $(p = 4)$	1.80	28.43	41.56	0.1285	23.13	0.7599
ParaStep $(p=2)$	1.69	30.27	41.90	0.0278	33.35	0.9347
ParaStep $(p=4)$	2.49	20.49	41.74	0.0732	26.99	0.8433
	L	atte (16 frames,	, 512×512)			
Latte $(T=50)$	1	32.56	73.68	_	-	-
xDiT-Ring $(p=2)$	1.01	32.18	73.87	0.0424	32.79	0.9273
xDiT-Ring $(p=4)$	1.07	30.50	73.81	0.0431	32.80	0.9266
ParaStep $(p=2)$	1.43	22.80	73.76	0.0432	32.51	0.9258
ParaStep $(p=4)$	1.82	17.91	73.76	0.0533	31.10	0.9115
	CogVi	deoX-2b (45 fra	mes, 512×72	0)		
CogVideoX $(T = 50)$	1	91.89	76.95	_	-	-
xDiT-Ring $(p=2)$	0.86	106.68	76.79	0.0570	32.24	0.9284
xDiT-Ring $(p=4)$	0.98	93.44	76.66	0.0817	29.53	0.9028
ParaStep $(p=2)$	1.47	62.50	76.97	0.0213	37.57	0.9642
ParaStep $(p=4)$	1.93	47.66	76.74	0.0359	34.34	0.9505

Experiments: Latency breakdown

- ➤ ParaStep exhibits significantly lower communication latency compared to AsyncDiff
- ➤ Lower communication directly contributes to its higher overall speedup.

Method	Total (s)	Comp. (s)	Comm. (s)
SVD	51.04	51.04	-
AsyncDiff $(p=2)$	39.30	30.71	8.59
ParaStep $(p=2)$	30.52	30.42	0.10
AsyncDiff $(p=4)$	31.30	21.01	10.29
ParaStep $(p=4)$	20.08	19.94	0.14

Experiments: BatchStep

- > ParaStep achieves high speedup with minor quality drop.
- ➤ BatchStep achieves competitive speedup without additional computation resources.

Method	Latency (s) ↓	FAD ↓
AudioLDM2 ($T=200$)	34.80	1.6653
ParaStep $(p=2)$	18.86	1.6651
ParaStep $(p=4)$	9.86	1.6716
BatchStep $(s=2)$	17.74	1.6671
BatchStep $(s=4)$	9.45	1.6699

Table 3: Generation latency and FAD on AudioLDM2-large. p is the degree of parallelism, s is the cycle length in BatchStep.

Broader impacts

- ➤ Our method can be applied in commercial settings to accelerate compute-intensive diffusion models, because it doesn't need high bandwidth
- ➤ For non-compute-intensive models, our proposed variant BatchStep enables speedup on a single device

Thanks