

Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models

Arian Mousakhan*

Sudhanshu Mittal*

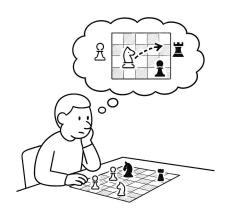
Silvio Galesso*

Karim Farid*

Thomas Brox

Main Contributors*
University of Freiburg, Germany

Supported by:


on the basis of a decision

by the German Bundestag

World Model

Learn dynamic representation Predict Simulate actions Plan

Related Work: Driving World Models

Non-testable:

- GAIA-1 (Hu et al. 2023)
- GAIA-2 (Russell et al. 2025)

Testable:

- Vista (Gao et al. 2024)
- GEM (Hassan el al. 2024)
- DrivingWorld (Hu et al. 2024)
- Cosmos (Nvidia 2025)

GAIA-1

Vista

GEM

DrivingWorld

Cosmos

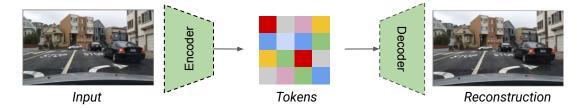
State-of-the-art & Challenges

Generating new scenes and content is hard, models struggle with:

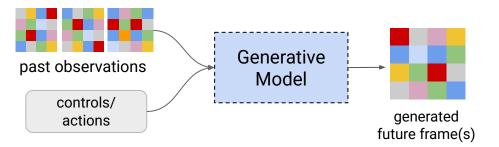
- Long-horizon generation
- Turns

GEM

Cosmos

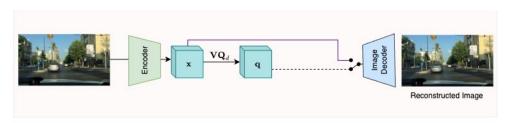


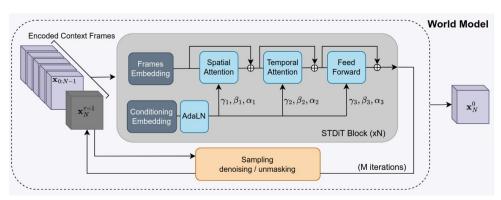
DrivingWorld



Two stage training

Stage 1: Tokenization


Stage 2: World modeling


universität freiburg

Discrete or continuous latent world model?

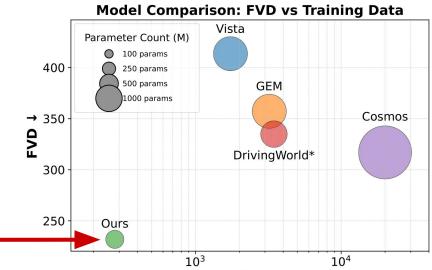
Stage-I Hybrid Tokenizer

Stage-II World Model

Iterative prediction:

- Continuous: denoising (Flow Matching)
- Discrete: unmasking (MaskGIT)

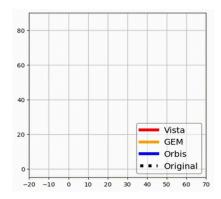
Continuous representation outperform Discrete one


	Discrete		
rFID↓	FVD↓ Orbis-MG	FVD ↓ Orbis	
	Orbis-MG	Orbis	
9.10	533.28	246.11	

Does token representation play a role?

DINO	TF	Vocab Size	rFID↓	FVD↓ Orbis-MG	FVD ↓ Orbis
X	X	4096	9.33	1331.28	240.34
/	X	4096	12.17	1214.34	248.79
/	1	2×4096	9.10	533.28	246.11

Orbis outperforms existing Driving World Models


Model	nuPlan	FVD↓ Waymo	nuPlan turns
Cosmos [1] Vista [17] GEM [25] DW* [31]	291.80 323.37 431.69 298.97	278.19 422.58 291.84 N/A	248.39 413.61 357.25 334.89
Orbis (ours)	134.06	167.57	239.20

Training Data (log scale, hours)

Orbis has more accurate trajectory

From video to trajectory: VGGT (Wang et al. 2025), as an inverse dynamics model.

Comparing trajectories of real and generated videos.

	Frechet		ADE	
Model	Prec.	Rec.	Prec.	Rec.
Vista	0.39	0.45	0.25	0.48
GEM	0.33	0.54	0.27	0.47
Ours	0.47	0.56	0.41	0.51

Unconditional generation: trajectory distribution similarity

Model	ADE ↓
Unconditional	5.20
+ ego-motion	2.40

Conditional generation of Orbis: trajectory per-sample similarity

Conclusion

- Efficient Driving World model
- Better in challenging scenarios
- Continuous model outperforms the discrete model
- Proposed metric for trajectory evaluation

Project page

Poster Session 4

Neurips 2025 San Diego Thu 4 Dec 4:30-7:30 p.m. PST

> EurlPS 2025 Copenhagen