Robust Estimation Under Heterogeneous Corruption Rates

Syomantak Chaudhuri¹, Jerry Li², Thomas A. Courtade¹

¹University of California Berkeley, ²University of Washington

Background

Robust Statistics Setup

- Conventional statistics → degrade rapidly when distributional assumptions are violated
- Robust statistics → work under distributional deviations or 'contamination'
- Huber contamination model:
 - True data $X_1, ..., X_n \stackrel{\text{iid}}{\sim} P$
 - Corruption rate $\lambda \in [0,1]$

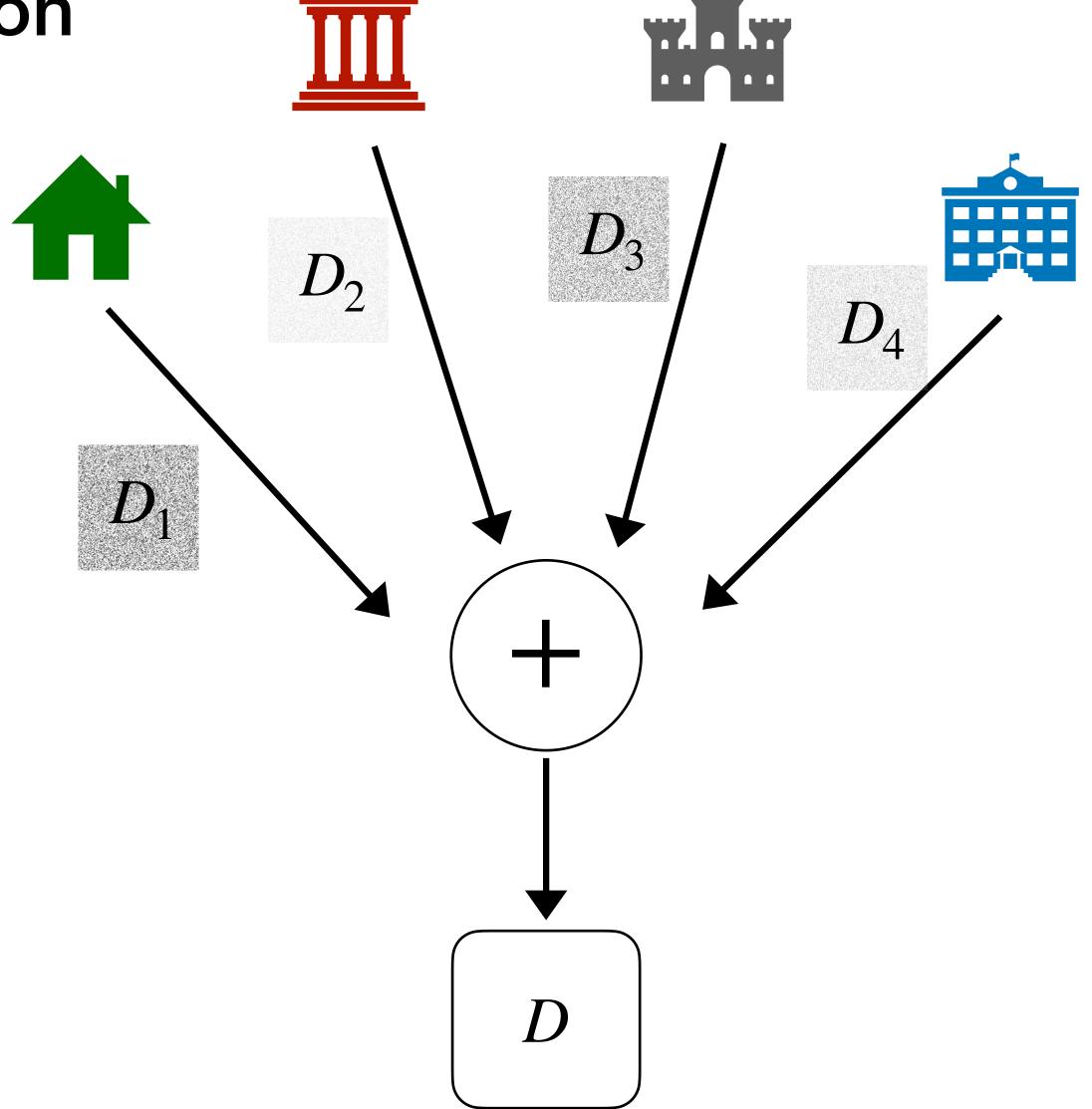
Observations
$$Z_1, \ldots, Z_n$$
 with $Z_i = \begin{cases} X_i & \text{wp } 1 - \lambda, \\ \tilde{X}_i & \text{else.} \end{cases}$

• $ilde{X}_1, ..., ilde{X}_n$ are modeled as worst-case (adversarial) for the statistical task

Heterogeneity

Motivation

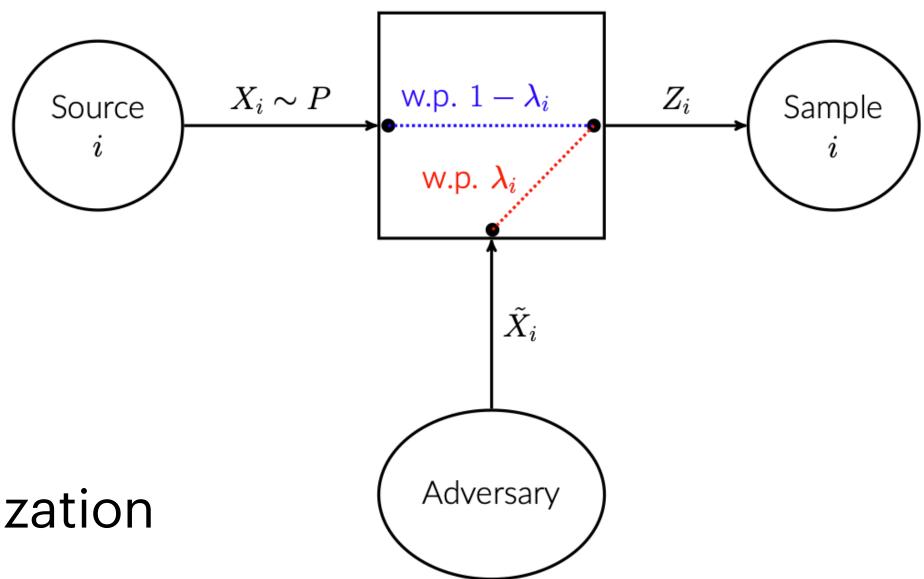
- Modern machine learning: federated setup
 - Dataset obtained from multiple sources
- Different sources → different reliability
- Example: temperature measured from different IoT sensors over the city
 - Cheaper, less reliable, IoT sensors in residential sources



Formal Setup

Notations

- Most general setup → every datapoint has different corruption rate
- True data $X_1, ..., X_n \stackrel{\text{iid}}{\sim} P$
- Corruption rates $\lambda = (\lambda_1, ..., \lambda_n)$, $B_i \sim \text{Bern}(\lambda_i)$ independently
- Observations $Z_1, ..., Z_n$ with $Z_i = (1 B_i)X_i + B_i \tilde{X}_i$
- Choose $\tilde{X}_1,\dots,\tilde{X}_n$ worst-case conditioned on the realization $\{(X_i,B_i)\}_{i\in[n]}$
- Notation: $Z \sim_{\lambda} P$



Bounded Mean Estimation

Setup and Results

- Let \mathscr{D}_r be the set of probability distributions in \mathbb{R}^d on the l_2 -ball of radius r
- Define λ -instance specific minimax MSE

$$L(\lambda) = \inf_{M} \sup_{P \in \mathcal{D}_r} \mathbb{E}_{\mathbf{Z} \sim_{\lambda} P} \left[\| M(\mathbf{Z}) - \mathbb{E}_{X \sim_{P}} [X] \|_{l_2}^{2} \right]$$

Let
$$f(\lambda, k) = \min_{t \in [0,1]} \left(\frac{k}{|\{i : \lambda_i \le t\}|} + t^2 \right)$$

- We show $L(\lambda) \simeq r^2 f(\lambda, 1)$
- Corollary: extra data above a certain level of corruption does not help reduce MSE

Gaussian Mean Estimation

Setup and Results

- Let \mathscr{D}_G be the set of all Gaussian distributions on \mathbb{R}^d with identity covariance
- Define λ -instance specific minimax PAC error

$$L_{\mathsf{PAC}}(\lambda) = \inf_{M} \sup_{P \in \mathcal{D}_r} Q\left(\left\| M(\mathbf{Z}) - \mathbb{E}_{X \sim P}[X] \right\|_{l_2}^2, \frac{1}{5} \right), \text{ where }$$

$$Q(Y, \delta) = \inf \left\{ t \in [0, \infty) : P[Y \ge t] \le \delta \right\}.$$

. We show
$$\frac{1}{\sqrt{d}}f(\lambda,d) \lesssim L_{\rm PAC}(\lambda) \lesssim f(\lambda,d)$$

• The gap of $O(\sqrt{d})$ is non-trivial

Gaussian Mean Estimation

Continued

- Challenges:
 - Standard robust estimation lower bound techniques do not work for heterogeneous λ -instance specific minimax rate
 - Use an interpolation of Assouad's method and Le Cam's method
- More in the paper:
 - Upper bound techniques using weighted Tukey median
 - Gaussian linear regression under heterogeneous corruption

