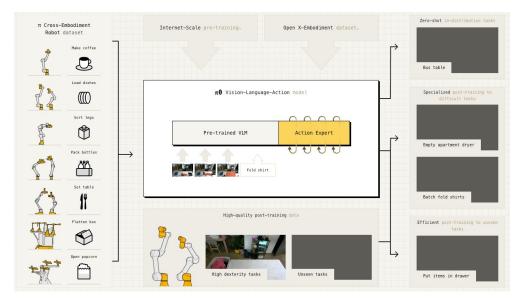
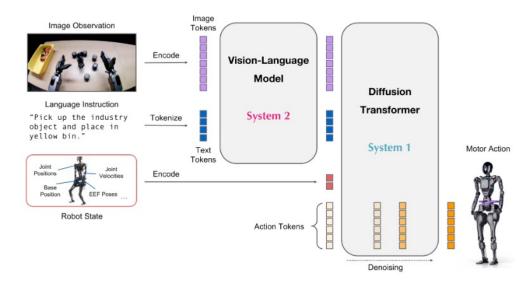
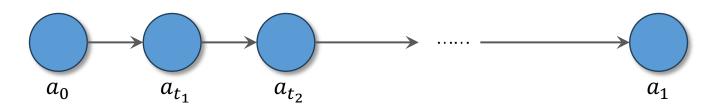


FreqPolicy: Efficient Flow-based Visuomotor Policy via Frequency Consistency

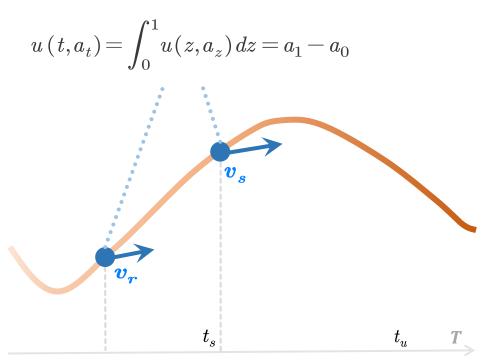

Yifei Su*, Ning Liu*† Dong Chen, Zhen Zhao, Kun Wu, Meng Li, Zhiyuan Xu, Zhengping Che†† Jian Tang‡



Among various visuomotor policies, generative model-based ones—such as diffusion policies [1] or flow matching policies, have gained excellent performance and widespread popularity.


10 NFE for PIO, PIO.5

4 NFE for GROOT N1, N1.5


Multi-step inference policies

One-step inference policies



Training with Basic Flow Matching Objective

To leverage the temporal of the action chunks, we strengthen the temporal constraint with the frequency regularization using the type-II Discrete Cosine Transform (DCT)::

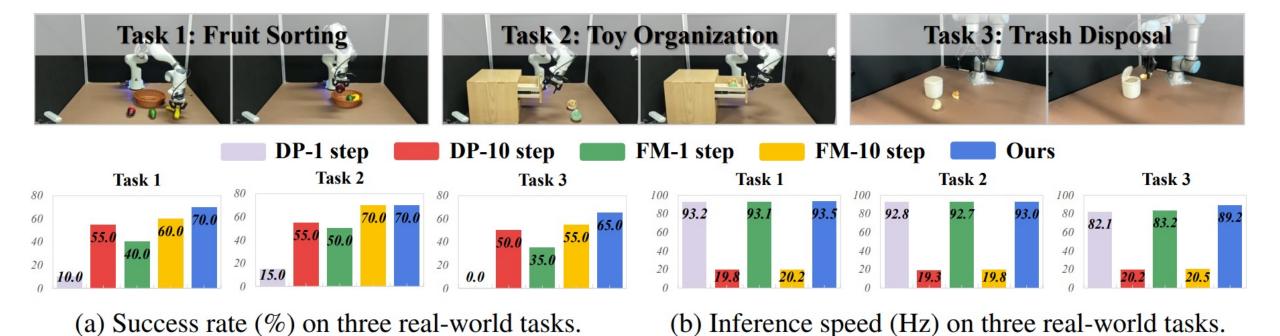
$$\begin{split} F\left(v_{t}\right)_{k} &= \sum_{n=0}^{H-1} v_{t}(n) \cdot \cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)k\right], \quad \text{for } k=0,...,H-1 \\ &\quad \text{Sim}\left(v_{r},v_{s}\right) = \left\|F\left(v_{r}\right) - F\left(v_{s}\right)\right\|_{2} \end{split}$$

The frequency components in each action chunks vary over the task execution. We propose an adaptive weighting scheme that focus on frequency components with larger discrepancies.

$$\begin{split} w_k &= \frac{\exp \left\| F\left(v_r\right)_k - F\left(v_s\right)_k \right\| \ _2 \right)}{\sum\limits_{j=0}^{H-1} \exp \left\| F\left(v_r\right)_j - F\left(v_s\right)_j \right\| \ _2 \right)} \\ &\operatorname{Sim} \left(v_r, v_s\right) &= \sum\limits_{k=0}^{H-1} w_k \cdot \left\| F\left(v_r\right)_k - F\left(v_s\right)_k \right\| _2 \end{split}$$

Method	NFE	Lift	Can	Square	Transport	Toolhang
DDPM [11]	15	1.00	$0.98 \pm .01$	$0.91 \pm .01$	$0.80 \pm .04$	$0.52 \pm .05$
DDiM [11]	15	1.00	$0.99 \pm .01$	$0.92 \pm .03$	$0.79 \pm .04$	$0.55 \pm .05$
RectifiedFlow* [40]	15	1.00	$0.96 \pm .02$	$0.90\pm.02$	$0.84\pm.04$	$0.90 \pm .02$
ActionFlow [19]	10	1.00	$0.99 \pm .01$	$0.87 \pm .10$	-	$0.81 \pm .09$
AdaFlow [24]	-	1.00	1.00	0.98	0.92	0.88
ConsistencyPolicy* [53]	3	1.00	$0.95\pm.02$	$0.96 \pm .01$	$0.88\pm.02$	$0.77\pm.03$
DDiM [11]	1	0.04	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$	$0.00 \pm .00$
ConsistencyPolicy* [53]	1	1.00	$0.98 \pm .01$	$0.92\pm.02$	$0.78 \pm .03$	$0.70 \pm .03$
Consistent-FM* [68]	1	1.00	$0.94 \pm .02$	$0.90 \pm .01$	$0.84\pm.02$	$0.80 \pm .02$
IMLE Policy [57]	1	1.00	0.98	0.82	0.90	0.81
Ours	1	1.00	$\textbf{0.98} \pm \textbf{.02}$	$\textbf{0.92} \pm \textbf{.02}$	$\textbf{0.90} \pm \textbf{.02}$	$0.85\pm.03$

FreqPolicy outperforms previous one-step methods such as CP and IMLE Policy. Furthermore, it even surpasses several classical multi-step policies.



Method	NFE	Spatial (%)	Object (%)	Goal (%)	Long (%)	Average (%)	Speed (Hz)
OpenVLA-DP [32]	50	92.0	75.0	93.4	11.8	68.1	0.32
OpenVLA-FlowMatching*	1	95.0	97.6	96.0	85.2	93.5	5.92
OpenVLA-FlowMatching*	10	96.0	97.2	97.8	83.6	93.7	1.26
OpenVLA-FreqPolicy (Ours)	1	97.0	98.6	96.0	87.6	94.8	6.05

Our FreqPolicy hits 94.8% average success, outperforms most baselines, excels vs. OpenVLA-DP (87.6% vs.11.8% in Long), and is faster than OpenVLA-Flow Matching (1 vs.10 NFE).

Thanks!

