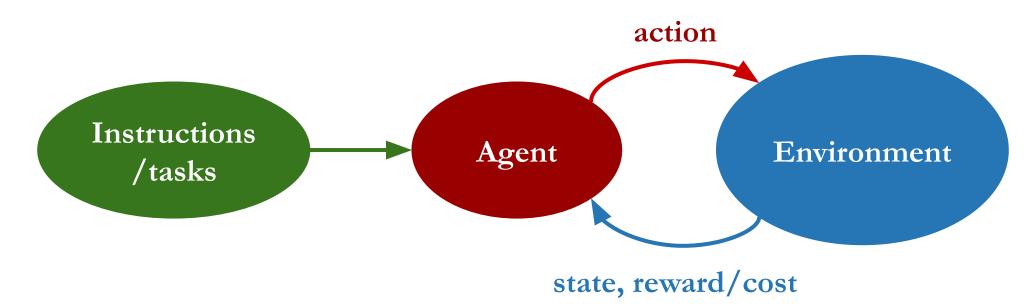

One Subgoal at a Time: Zero-Shot Generalization to Arbitrary Linear Temporal Logic Requirements in Multi-Task Reinforcement Learning

Zijian Guo¹, İlker Işık², H. M. Sabbir Ahmad¹, Wenchao Li^{1,2}

¹Division of Systems Engineering, Boston University ²Department of Electrical and Computer Engineering, Boston University {zjguo, iilker, sabbir92, wenchao}@bu.edu

Reinforcement Learning



Reinforcement Learning

How to follow diverse, complex, and even unseen instructions/tasks?

• long-horizon goals, logical dependencies, safety constraints

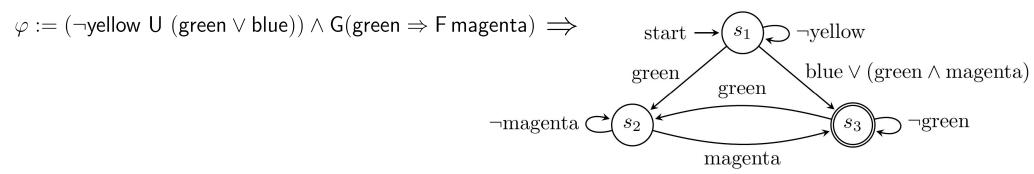
• Formal language to specify system's behaviors

- Formal language to specify system's behaviors
- Syntax of LTL

$$\varphi := \boldsymbol{a} \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \mathsf{F} \varphi \mid \mathsf{G} \varphi \mid \varphi_1 \mathsf{U} \varphi_2$$

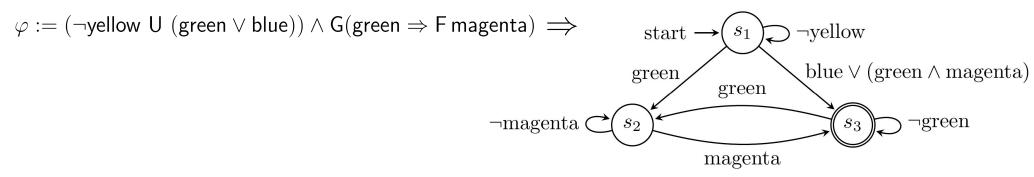
- Atomic propositions: AP, $a \in AP$
- Boolean (\neg, \land, \lor) and temporal (F, G, U) operators.

- Formal language to specify system's behaviors
- Syntax of LTL


$$arphi := oldsymbol{a} \mid
eg arphi \mid arphi_1 \wedge arphi_2 \mid arphi_1 ee arphi_2 \mid \mathsf{F} arphi \mid \mathsf{G} arphi \mid arphi_1 \mathsf{U} arphi_2$$

- Atomic propositions: AP, $a \in AP$
- Boolean (\neg, \land, \lor) and temporal (F, G, U) operators.
- Tasks can be expressed over high-level environment features

 $\varphi := (\neg \text{yellow U (green } \lor \text{blue})) \land G(\text{green} \Rightarrow \text{F magenta})$ (avoid yellow until reaching green or blue; whenever green is visited, magenta must eventually follow.)



• **Büchi automata (BA):** for any LTL formula, it can be converted to an equivalent BA, which can be represented as **directed state-transition graphs**.

• **Büchi automata (BA):** for any LTL formula, it can be converted to an equivalent BA, which can be represented as **directed state-transition graphs**.

• Reach-Avoid Subgoal Construction: depth-first search (DFS) to enumerate all possible paths and extract reach-avoid subgoals (α^+, A^-)

$$p_1 = \{(\alpha^+ = \{\text{green}\}, A^- = \{\text{yellow}\}), (\alpha^+ = \{\text{magenta}\}, A^- = \emptyset)\}$$

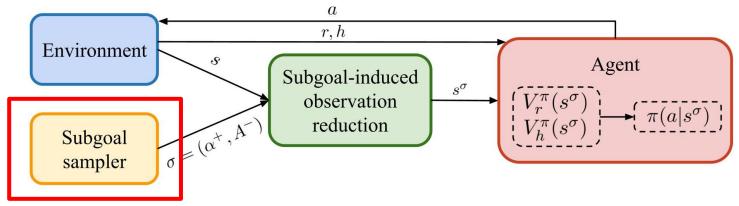
 $p_2 = \{(\alpha^+ = \{\text{blue}\}, A^- = \{\text{yellow}\})\}$

Challenges of Generalization

• Satisfying an LTL formula = completing a sequence of reach-avoid subgoals

Challenges of Generalization

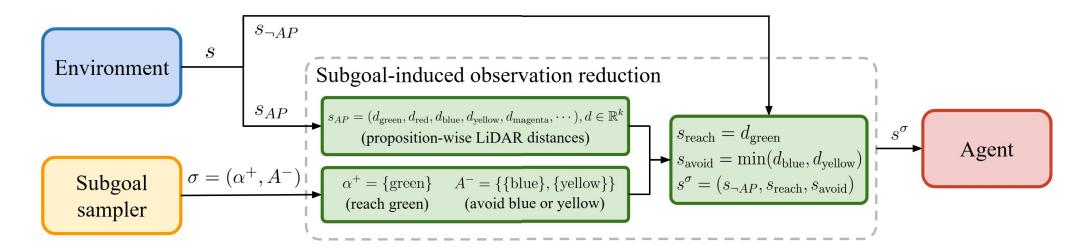
- Satisfying an LTL formula = completing a sequence of reach-avoid subgoals
- Existing methods:
 - Structure of the automaton/entire subgoal sequence
 - Policy conditioned on those representations
 - Limitation: Out-of-distribution (OOD) issue of new LTL formulas at test time



Challenges of Generalization

- Satisfying an LTL formula = completing a sequence of reach-avoid subgoals
- Existing methods:
 - Structure of the automaton/entire subgoal sequence
 - Policy conditioned on those representations
 - Limitation: Out-of-distribution (OOD) issue of new LTL formulas at test time
- In contrast, we address this problem by solving one subgoal at a time

GenZ-LTL: Training



- **Subgoal sampling:** all possible subgoals $\xi = \{(\alpha^+, A^-)_i\}_{i=1}^M$
 - Enumerate each assignment $\mathbf{a} \in 2^{AP}$ as a candidate α^+
 - For each such α^+ , we filter out the remaining assignments that conflict with it. We then enumerate all possible combinations of the filtered assignments to form A^-

GenZ-LTL: Training

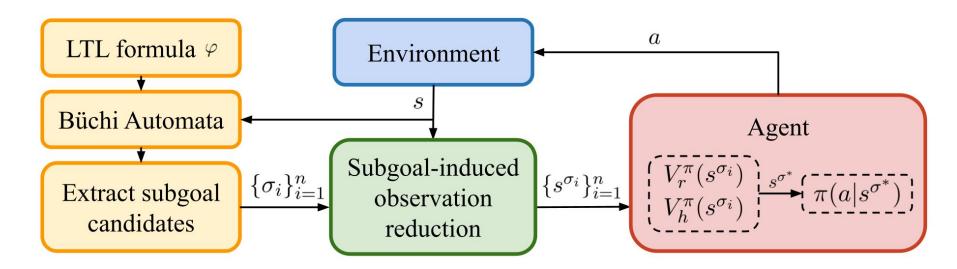
- Subgoal-Induced observation reduction
 - Note that $a \in 2^{AP}$, so the total number of subgoal grows exponentially
 - Idea: focus only on subgoal-relevant observations to reduce sample complexity

GenZ-LTL: Training

Policy learning with reachability constraints

$$\pi_{k+1} = \underset{\pi}{\operatorname{arg \, max}} \ \mathbb{E}_{\sigma \sim \operatorname{Unif}(\xi), s \sim d^{\pi_k}, a \sim \pi_k} \left[\frac{\pi}{\pi_k} A_r^{\pi_k}(s^{\sigma}, a) \right]$$
s.t.
$$\mathbb{E}_{\sigma \sim \operatorname{Unif}(\xi), s \sim d^{\pi_k}} \left[\mathcal{D}_{KL}(\pi, \pi_k) \right] \leq \epsilon$$

$$\mathbb{E}_{\sigma \sim \operatorname{Unif}(\xi), s \sim d^{\pi_k}, a \sim \pi_k} \left[(1 - \gamma) J_h(\pi_k) + \frac{\pi}{\pi_k} A_h^{\pi_k}(s^{\sigma}, a) \right] \leq 0$$
where $h : \mathcal{S} \mapsto \mathbb{R}$ is the constraint violation function
$$A_h^{\pi}(s^{\sigma}, a) := Q_h^{\pi}(s^{\sigma}, a) - V_h^{\pi}(s^{\sigma})$$


$$Q_h^{\pi}(s^{\sigma}, a) := \max_{t \in \mathbb{N}} h(s_t^{\sigma}), s_0 = s^{\sigma}, a_0 = a, a_t \sim \pi$$

$$J_h(\pi) := \max_{t \in \mathbb{N}} h(\cdot), a \sim \pi$$

GenZ-LTL: Testing

• Given a target LTL specification, we construct the corresponding BA and identify candidate subgoals based on the current automaton state. The subgoal to be executed is selected as $\sigma^* = \arg\max_{\sigma} V_r(s^{\sigma}) - \lambda(s^{\sigma})V_h(s^{\sigma})$

Experimental Settings

Environments

- LetterWorld: 7×7 grid world
- ZoneEnv: high-dimensional env with lidar observations
- Randomized environments

	е			h	f	
i	h		k	đ	е	j
			g			g
i	а				I	
j			d	b		
С		k	f	С	b	
		а			ı	

Experimental Settings

LTL specifications

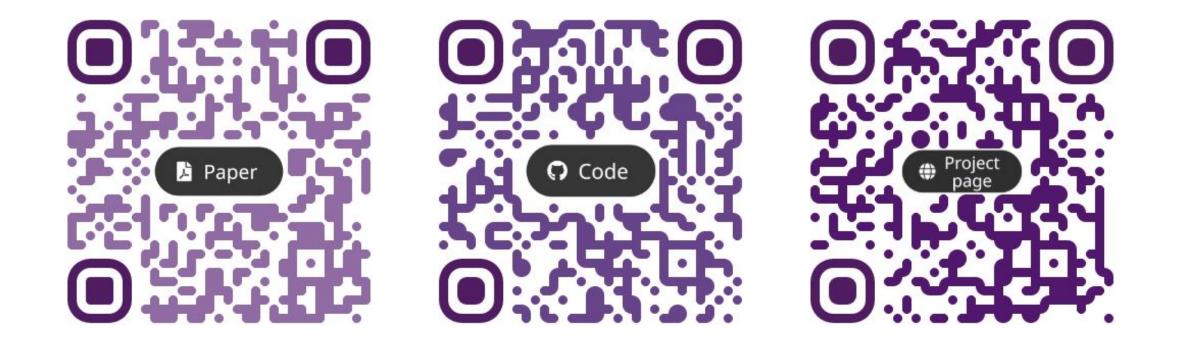
		LetterWorld	ZoneEnv			
	φ_1	$F(a \land (\neg b \lor C)) \land Fd$	φ_9	$(Fb) \wedge (\neg b \ U \ (g \wedge Fy))$		
Finite-horizon	φ_2	$(Fd) \wedge (\neg fU(d \wedge Fb))$	φ_{10}	$\neg (m \lor y) \ \ U \ \ (b \land F g)$		
	φ_3	$\neg a \ U \ (b \land (\neg c \ U \ (d \land (\neg e \ U \ f))))$	φ_{11}	$\neg g \ U \ ((b \lor m) \land (\neg g \ U \ y))$		
	φ_4	$(a \lor b \lor c \lor d \Rightarrow F \; (e \land F \; (f \land F g))) \;\; U \;\; (h \land F i)$	φ_{12}	$(g \lor b \Rightarrow (\neg y \ U \ m)) \ \ U \ y$		
	φ_5	$F \ (d \wedge (\neg (a \vee b) \ U \ (b \wedge (\neg e \ U \ c)))) \wedge F \ (\neg (f \vee g \vee h) \ U \ a)$	φ_{13}	$F\ (g \wedge (\neg(b \vee y)\ U\ (y \wedge (\negm\ U\ b)))) \wedge F\ (\negg\ U\ y)$		
	φ_6	$F \left((k \wedge ((\neg b \vee c) \ U \ f)) \wedge (\neg (a \vee e \vee h) \ U \ g) \right) \wedge F d$	φ_{14}	$F\ ((b \vee g) \wedge (\neg y\ U\ (b \wedge (\neg (g \vee m)\ U\ m)))) \wedge F\ (y \wedge (\neg b\ U\ g)))$		
	φ_7	$\neg (j \lor b \lor d) \ \ U \ \ (a \land (\neg c \ U \ (f \land F \ (g \land (\neg d \ U \ e)))))$	φ_{15}	$\neg (m \vee y) \ U \ (b \wedge (\neg g \ U \ (y \wedge F \ (g \wedge (\neg b \ U \ m)))))$		
	φ_8	$\neg (f \vee g) \ U \ (a \wedge (\neg b \ U \ c) \wedge F \ (d \wedge (\neg e \ U \ f)))$	φ_{16}	$F\ (b \wedge (\neg y\ U\ (g \wedge F\ (y \wedge (\neg (m \vee g)\ U\ b)))))$		
	ψ_1	$GF(e \land (\neg a \ U \ f)) \land G \neg (c \lor d)$	ψ_4	$GFb \land GFg \land G \lnot (y \lor m)$		
Infinite-horizon	ψ_2	$GFa \wedge GFb \wedge GFc \wedge G \neg (e \lor f \lor i)$	ψ_5	$GFb \wedge GFy \wedge GFg \wedge G \neg m$		
	ψ_3	$GFc \wedge GFa \wedge GF (e \wedge (\neg f \ U \ g)) \wedge GFk \wedge G \neg (i \vee j)$	ψ_6	$FGy\wedgeG\neg(g\veeb\veem)$		

• All LTL specifications are unseen at test time for our method

Main Results

 GenZ-LTL achieves higher success and lower violation rates, while learning more efficient policies

		LTL2Action		GCRL-LTL		DeepLTL			RAD-embeddings			GenZ-LTL(out		ours)		
		$\eta_s \uparrow$	$\eta_v\downarrow$	$\mu\downarrow$	$\eta_s \uparrow$	$\eta_v \downarrow$	$\mu \downarrow$	$\eta_s \uparrow$	$\eta_v\downarrow$	$\mu\downarrow$	$\eta_s \uparrow$	$\eta_v\downarrow$	$\mu\downarrow$	η_s \uparrow	$\eta_v\downarrow$	$\mu\downarrow$
ter	$arphi_{1-4}$	$0.62_{\pm0.16}$	$0.07_{\pm 0.09}$	$26.64_{\pm 5.87}$	$0.87_{\pm0.11}$	$0.03_{\pm 0.05}$	$16.05_{\pm 6.13}$	$0.87_{\pm 0.04}$	$0.00_{\pm 0.01}$	$7.51_{\pm 1.21}$	$0.90_{\pm 0.06}$	$0.04_{\pm 0.04}$	$17.79_{\pm 3.37}$	$0.98_{\pm0.02}$	$0.00_{\pm 0.00}$	$7.22_{\pm 1.18}$
Let	$arphi_{5-8}$	$0.24_{\pm 0.12}$	$0.20_{\pm 0.25}$	$36.43_{\pm 6.08}$	$0.65_{\pm 0.08}$	$0.11_{\pm 0.06}$	$18.71_{\pm 2.54}$	$0.76_{\pm 0.05}$	$0.01_{\pm 0.02}$	$10.62_{\pm 1.47}$	$0.82_{\pm0.10}$	$0.07_{\pm 0.08}$	$24.29_{\pm 3.77}$	$0.95_{\pm0.03}$	$0.00_{\pm 0.00}$	$9.82_{\pm 1.42}$
ne	φ_{9-12}	$0.57_{\pm 0.37}$	$0.17_{\pm 0.21}$	$331.21_{\pm 165.88}$	$0.88_{\pm 0.04}$	$0.05_{\pm 0.02}$	$305.28_{\pm 123.33}$	$0.91_{\pm 0.05}$	$0.04_{\pm0.03}$	$220.39 {\scriptstyle \pm 78.77}$	$0.94_{\pm 0.05}$	$0.04_{\pm 0.05}$	$269.53_{\pm 129.95}$	$0.99_{\pm0.01}$	$0.01_{\pm 0.01}$	$254.69_{\pm 89.18}$
Zo	φ_{13-16}	$0.12_{\pm 0.18}$	$0.17_{\pm 0.28}$	$886.39_{\pm 288.60}$	$0.70_{\pm 0.07}$	$0.09_{\pm 0.04}$	$606.42_{\pm 26.76}$	$0.87_{\pm 0.08}$	$0.03_{\pm 0.06}$	$505.17_{\pm 54.03}$	$0.70_{\pm 0.15}$	$0.00_{\pm0.01}$	$647.39_{\pm 40.74}$	$0.98_{\pm0.02}$	$0.01_{\pm 0.01}$	$408.71_{\pm 27.47}$


Finite-horizon tasks

Methods	Metrics		LetterWorld		ZoneEnv			
Wethods	Metries	ψ_1	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	
GenZ-LTL(ours)	$\mu_{ m acc}\uparrow$	$208.95_{\pm 14.39}$	$102.12_{\pm 7.02}$	$55.17_{\pm 1.08}$	$55.16_{\pm 4.23}$	$32.75_{\pm 1.20}$	$8135.67_{\pm 1489.99}$	
	$\eta_v\downarrow$	$0.00_{\pm 0.00}$	$0.00_{\pm 0.00}$	$0.00_{\pm0.00}$	$0.07_{\pm0.02}$	$0.03_{\pm 0.01}$	$0.03_{\pm0.02}$	
DeepLTL	$\mu_{ m acc} \uparrow$	$142.56_{\pm 22.44}$	$48.28_{\pm 12.37}$	$19.21_{\pm 4.57}$	$30.03_{\pm 13.23}$	$15.73_{\pm 4.44}$	$7337.38_{\pm 2019.56}$	
	$\eta_v\downarrow$	$0.04_{\pm 0.02}$	$0.09_{\pm 0.01}$	$0.09_{\pm 0.04}$	$0.39_{\pm0.10}$	$0.38_{\pm0.24}$	$0.13_{\pm 0.05}$	
GCRL-LTL	$\mu_{ m acc}\uparrow$	$41.98_{\pm 15.80}$	$22.77_{\pm 9.50}$	$9.53_{\pm 2.28}$	$30.00_{\pm 3.72}$	$14.61_{\pm 1.62}$	$5584.34_{\pm 3180.15}$	
	$\eta_v\downarrow$	$0.18_{\pm 0.08}$	$0.30_{\pm 0.08}$	$0.30_{\pm0.18}$	$0.37_{\pm 0.08}$	$0.40_{\pm 0.08}$	$0.14_{\pm 0.01}$	

Infinite-horizon tasks

Please scan the following QR codes for more details

