

<u>Permutation Equivariant Neural Controlled</u> <u>Differential Equations for Dynamic Graph</u> <u>Representation Learning</u>

Torben Berndt, Benjamin Walker, Tiexin Qin, Jan Stühmer and Andrey Kormilitzin 39th Conference on Neural Information Processing Systems (NeurIPS 2025)

Main Contribution:

Project Neural Controlled Differential Equations on Graphs onto Equivariant function spaces.

Significantly reduces parameter count without compromising representational power, resulting in more efficient training and improved generalisation.

<u>Graph Neural Controlled Differential</u> <u>Equations (GNCDEs)¹</u>

Given graph snapshots $\mathcal{G}=\{G_1,\dots,G_n\}$ with a dynamic graph topology, GNCDEs interpolate into continuous edge data $A:[0,T]\to\mathbb{R}^{n\times n}$, and learn paths of the form

$$Z_t = Z_{t_0} + \int_{t_0}^t Z_s^{(L)} ds, \qquad Z_s^{(l)} = \sigma \left(\tilde{A}_s Z_s^{(l-1)} W^{(l-1)} \right)$$

with a GCN vector field and fusion

$$\tilde{A}_s = W_1 A_s + W_2 \frac{dA_s}{ds}$$

¹Learning dynamic graph embeddings with neural controlled differential equations, Qin et al. (2025)

<u>Permutation Equivariant Graph Neural</u> <u>Controlled Differential Equations</u> <u>(PENG-NCDEs)</u>

Problem: The fusion is not equivariant under permutation of the node-set!

Fix: Expand linear maps L_i in the basis of linear permutation equivariant functions and define the equivariant fusion

$$\bar{A}_s = L_1(A_s) + L_2(\frac{dA_s}{ds})$$

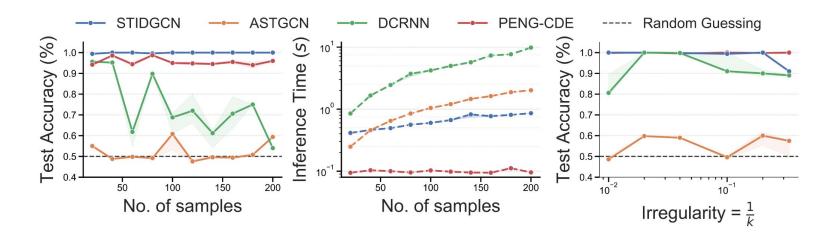
Theorem: This is the most general permutation equivariant GNCDE we can consider!

Results

Model	$\begin{array}{cc} \texttt{trade} & \texttt{genre} \\ \textbf{NDCG@10} \uparrow \end{array}$	
Persistent Forecast (L) [†]	0.855	0.357
Moving Avg (L) [†]	0.823	0.509
Moving Avg (M)	0.777	0.472
JODIE [‡] [39]	0.374 ± 0.09	$0.350{\pm}0.04$
TGAT [‡] [15]	0.375 ± 0.07	$0.352 {\pm} 0.03$
CAWN [‡] [66]	0.374 ± 0.09	_
TCL [‡] [65]	0.375 ± 0.09	$0.354 {\pm} 0.02$
GraphMixer [‡] [14]	0.375 ± 0.11	$0.352 {\pm} 0.03$
DyGFormer [‡] [68]	$0.388 {\pm} 0.64$	$0.365{\pm}0.20$
DyRep [†] [60]	0.374 ± 0.001	$0.351 {\pm} 0.001$
TGN^{\dagger} [53]	0.374 ± 0.001	$0.367 {\pm} 0.058$
TGNv2* [59]	0.735 ± 0.006	$0.469 {\pm} 0.002$
STG-NCDE [10]	0.618 ± 0.024	0.438 ± 0.038
GN-CDE [48]	0.713 ± 0.026	$0.460 {\pm} 0.016$
PENG-CDE	0.716 ± 0.029	0.523 ± 0.017
+ Source/Target Id	0.734 ± 0.024	_

PENG-CDEs are state-of-the-art on popular Temporal Graph benchmark³!

<u>Results</u>



PENG-CDEs are robust to oversampling and irregular sampling!

<u>Summary</u>

- Introduce geometrically-informed approach to employing CDEs on graphs
- 2. Set new state-of-the-art result in the TGB dataset
- 3. Inherit robustness properties of Neural CDEs

Authors

Torben Berndt

Benjamin Walker

Tiexin Qin

Jan Stühmer

Andrey Kormilitzin