

Protein Design with Dynamic Protein Vocabulary

Nuowei Liu*, Jiahao Kuang*, Yanting Liu Tao Ji, Changzhi Sun, Man Lan, Yuanbin Wu

nwliu@stu.ecnu.edu.cn

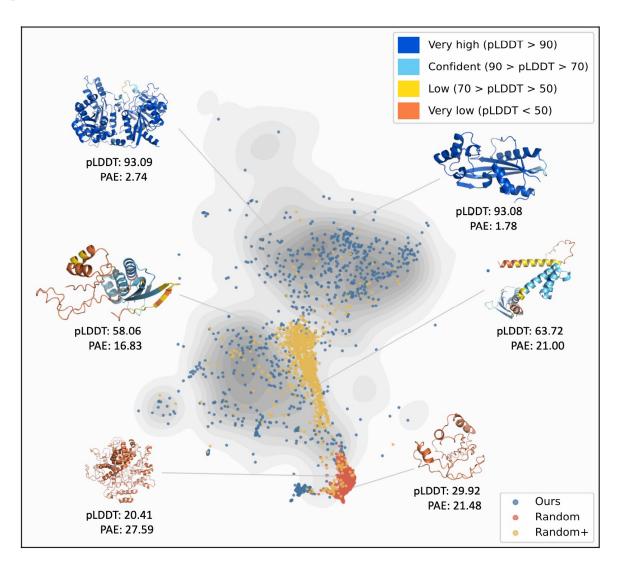
Background

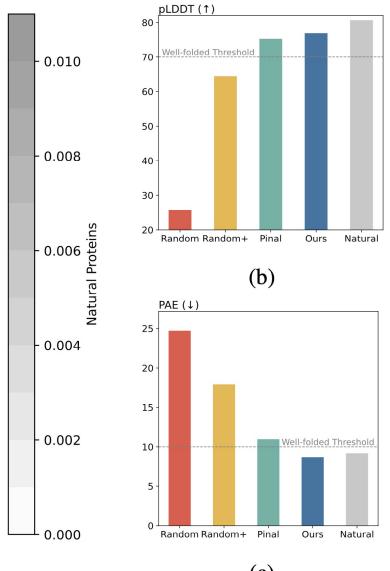
Problem Design novel proteins that exhibit user-specified functions

$$p(P|t) = p((x_1, x_2, \dots, x_k)|t, \forall i, x_i \in A)$$

Challenges

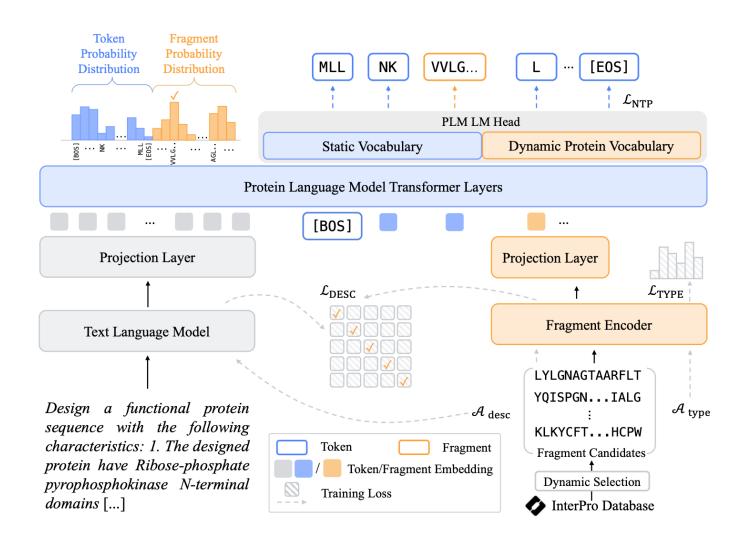
- Satisfying the requirements of input textual descriptions
- The designed proteins should be able to fold into stable 3D structures


Intuition Classical methods leverage natural protein structures


- Rational Design
- Directed Evolution

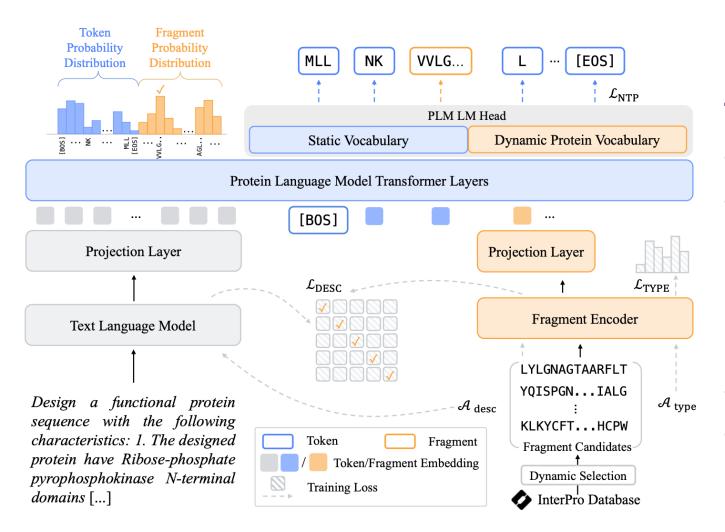
Whether well-folded novel proteins with user-specified functions can be directly assembled by utilizing fragments of natural proteins (e.g., motifs, functional sites, etc.) and their extensive functional annotations?

Background



(a)

Method


ProDVa (Protein Design with Dynamic Protein Vocabulary)

Model Architecture

- Text Language Model
- Protein Language Model
- Fragment Encoder

Method

Training Objectives

- Learning Next Token/Fragment Prediction
- Learning Functional Annotations

$$\mathcal{L} = \mathcal{L}_{NTP} + \alpha \mathcal{L}_{TYPE} + \beta \mathcal{L}_{DESC}$$

Inference

- Retrieving the top K most relevant descriptions
- Constructing the fragment candidates

ProDVa (Protein Design with Dynamic Protein Vocabulary)

Experiments

Designing Proteins from Function Keywords

Models	#Pairs #Params	Sequence Plausibility		Foldability				Language Alignment (in %)			Sequence
		PPL (\(\psi\))	Rep (↓)	pLDDT (†)	% > 70 (†)	PAE (\dagger)	% < 10 (†)	ProTrek Score (†)	Keyword Recovery (†)	Retrieval Accuracy (†)	Diversity (†)
Natural	-	467.64	0.02	81.21	90.53	7.08	82.05	21.09	100.00	70.81	-
Random (U) Random (E) Random+ (E)	- - -	2471.95 3046.64 966.24	0.01 0.01 0.01	24.38 27.46 62.38	0.00 0.00 32.65	23.81 23.70 17.23	0.13 0.00 9.28	7.50 6.59 3.29	0.00 0.00 0.00	6.05 5.13 5.79	97.46 99.78 98.97
ProteinDT ProteinDT _{FT}	541K/729M 392K/729M	1405.70 1860.43	0.11 0.04	38.70 38.66	0.20 1.04	26.25 23.90	0.00 0.42	3.89 6.28	0.05 1.08	7.43 16.57	99.72 99.32
Pinal [†] PAAG PAAG _{ET}	1.76B/2B 130K/1.3B 392K/1.3B	584.22 2571.40 2004.01	0.15 0.02 0.04	66.50 33.14 41.53	$\frac{47.21}{0.00}$ 1.12	14.57 23.31 24.34	33.53 0.00 0.46	14.57 5.21 3.46	30.46 0.23 0.01	51.68 7.10 7.82	82.72 99.02 99.87
Chroma [†] ESM3 [†]	45K/334M 539M/1.4B	1322.37 279.78	0.03 0.33	61.66 59.79	28.96 31.49	$\frac{13.01}{17.40}$	39.03 21.37	2.97 3.76	0.11 5.49	6.57 11.97	97.21 96.77
ProDVa	392K/1.8B	656.04	0.01	75.88	77.00	6.39	83.88	14.43	30.34	<u>44.77</u>	98.58

Key Findings

- Under the same training data setting, ProDVa consistently surpasses both ProteinDT and PAAG
- ProDVa remains within a reasonable PPL range and demonstrates the capability to design well-folded proteins
- ProDVa uses only 0.02% of the text-protein pairs used to train Pinal, yet achieves competitive performance

Experiments

Designing Proteins from Textual Descriptions

Models	#Pairs #Params	Sequence Plausibility		Foldability				Language Alignment (in %)			Sequence
		PPL (↓)	Rep (↓)	pLDDT (†)	% > 70 (†)	PAE (↓)	% < 10 (†)	ProTrek Score (†)	EvoLlama Score (†)	Retrieval Accuracy (†)	Diversity (†)
Natural	-	318.15	0.02	80.64	81.27	9.20	65.73	27.00	60.33	84.85	-
Random (U)	-	2484.03	0.01	22.96	0.16	24.85	0.56	1.03	36.23	6.89	97.01
Random (E) Random+ (E)	- -	3136.88 846.01	0.01 0.01	25.77 64.47	0.20 37.03	24.71 17.91	0.60 7.52	1.04 0.30	34.11 38.65	6.78 6.13	99.56 98.63
ProteinDT ProteinDT _{FT} Pinal [†] PAAG PAAG _{FT}	541K/729M 712K/729M 1.76B/2B 130K/1.3B 712K/1.3B	1576.23 1213.38 308.97 2782.70 1332.35	0.07 0.04 0.13 <u>0.02</u> 0.04	38.29 51.42 <u>75.25</u> 28.39 50.37	0.98 25.61 68.97 0.07 23.86	25.13 18.57 10.96 25.38 19.96	0.40 23.92 58.44 0.10 21.99	1.20 13.89 17.50 1.29 10.04	40.57 52.84 53.42 34.39 49.69	9.28 47.29 <u>57.95</u> 7.06 33.66	99.23 79.87 82.96 99.15 86.09
Chroma [†]	45K/334M	1370.21	0.03	59.18	20.17	15.03	28.62	2.10	40.10	7.33	96.13
ProDVa	712K/1.8B	<u>415.63</u>	0.02	76.86	76.35	8.66	68.06	<u>17.40</u>	51.10	59.07	83.29

Key Findings

- Most baselines struggle to design proteins that are both well-folded and well-aligned
- Incorporating additional data may potentially improve performance, particularly in terms of language alignment
- ProDVa demonstrates competitive sequence diversity compared to other baselines

Experiments

NEURAL INFORMATION PROCESSING SYSTEMS

Unconditional Protein Generation

Models	PPL (↓)	Rep (↓)	pLDDT (†)	% > 70 (†)	PAE (↓)	% < 10 (†)
ProteinDT _{FT} PAAG _{FT}	593.06 1327.98	17.92 3.55	47.79 50.32	0.02 23.83	26.56 19.95	0.00
Pinal	411.93	14.05	70.11	<u>57.02</u>	12.76	48.44
ProDVa	<u>476.02</u>	1.47	77.52	79.78	9.32	60.25

- Fixing the input instruction to Design a novel protein sequence
- Replacing the retrieval method with the random selection of fragments

Key Findings

- ProDVa outperforms all baseline models on the unconditional protein generation task
- Compared to other fine-tuned models, ProDVa achieves substantially superior performance

Thank You!

HuggingFace