

HumanoidGen: Data Generation for Bimanual Dexterous Manipulation via LLM Reasoning

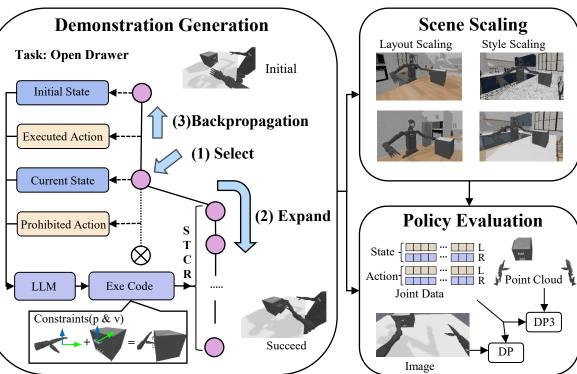
Zhi Jing^{1,2}, Siyuan Yang^{3,2}, Jicong Ao², Ting Xiao⁴, Yu-Gang Jiang¹, Chenjia Bai^{†2}

¹Fudan University*, ² Institute of Artificial Intelligence (TeleAI), China Telecom*, ³University of Science and Technology of China, ⁴East China University of Science and Technology

*Equally leading organizations † Corresponding Author

Content

Style Scaling


Motivation

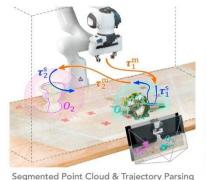
Method

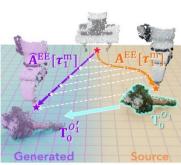
Experiments

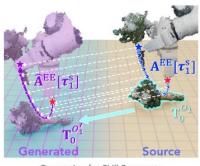
Conclusion

DP3

Motivation






Manipulation Data Generation

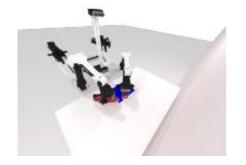
■ Guided by Expert Demonstrations

DemoGen (RSS 2025)

Generation for Motion Segments

Generation for Skill Segments

MimicGen (CoRL 2023)



Without Expert Demonstrations

Motion Planner Based

GenSim2 (CoRL 2024)

RoboTwin (CVPR 2025)

Reinforcement Learning Based

RoboGen (ICML 2024)

(g) Coffee Prep

(h) Mobile Kitchen

(i) Gear Assembly

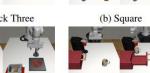
(i) Frame Assembly

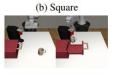
Motivation

Manipulation Data Generation

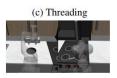
Guided by Expert Demonstrations

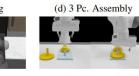
DemoGen (RSS 2025)

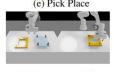

Is there a task generation framework for bimanual dexterous long-horizon manipulation that does not rely on expert


demonstrations?

Segmented Point Cloud & Trajectory Parsing


MimicGen (CoRL 2023)




(g) Coffee Prep

(h) Mobile Kitchen

(i) Gear Assembly

Without Expert Demonstrations

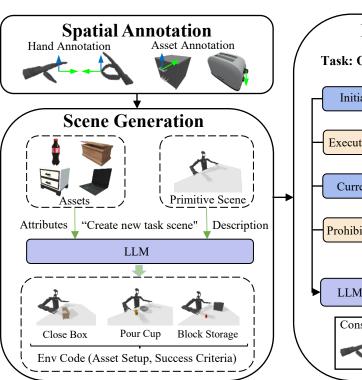
■ Motion Planner Based

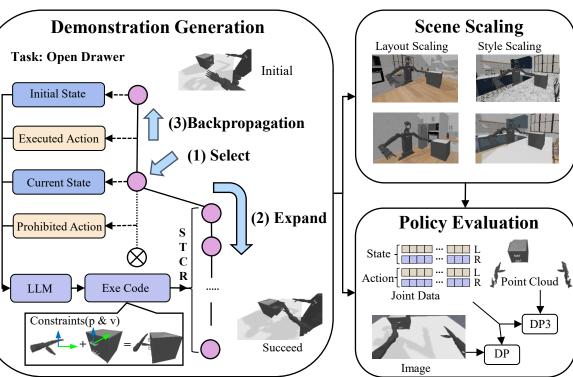
GenSim2 (CoRL 2024) RoboTwin (CVPR 2025)

Reinforcement Learning Based

RoboGen (ICML 2024)

Content

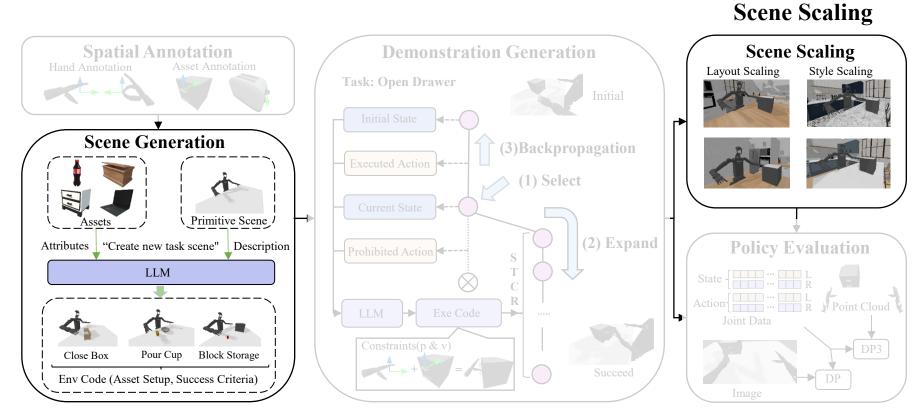



Motivation

Method

Experiments

Conclusion



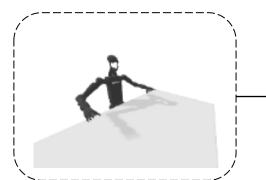
DP3

Room-level

■ Scene Setting

Tabletop-level Scene Generation

■ Scene Setting (Table-level)


Assets Attributes

Type Name (Box ...)
Id Range (Box: 0-10)
Rigid or Articulated
Bounding Box

Assets Description

Task Instruction:

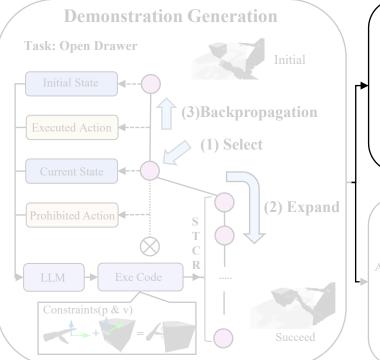
Close the box using the right hand. (Clear)
Design a new task. (Unclear)

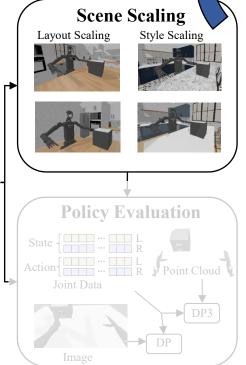
Scene Configuration

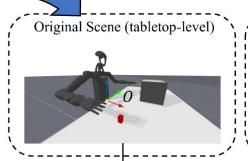
Scene Description Robot Initial Pose Joint Initial State Coordinate System

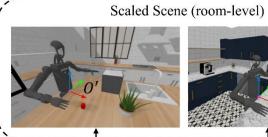
Scene Setting Code

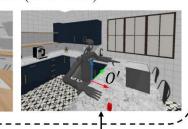
- 1. Which assets are used?
 _add_object("Box",0)
- 2. State definition?
 _set_object_state("Box",
 pose=...,openness=...)
- 3. Success criteria?
 box.openness<close_limit
 (using the state obtained
 from the simulation
 environment)

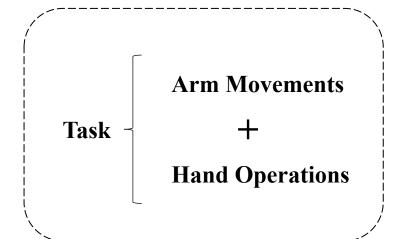


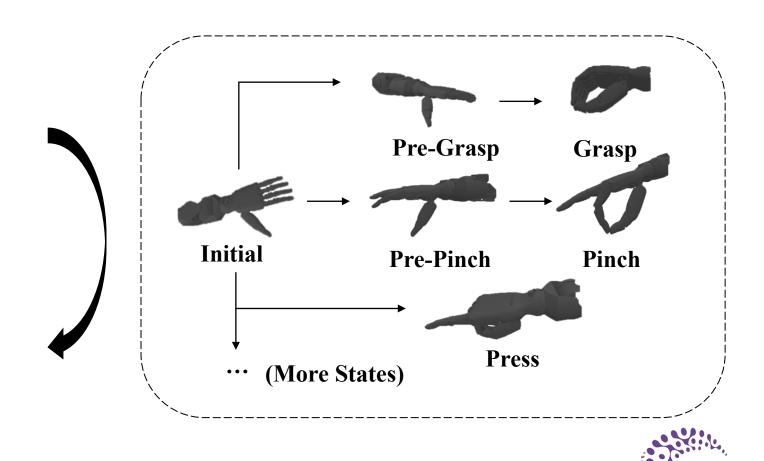




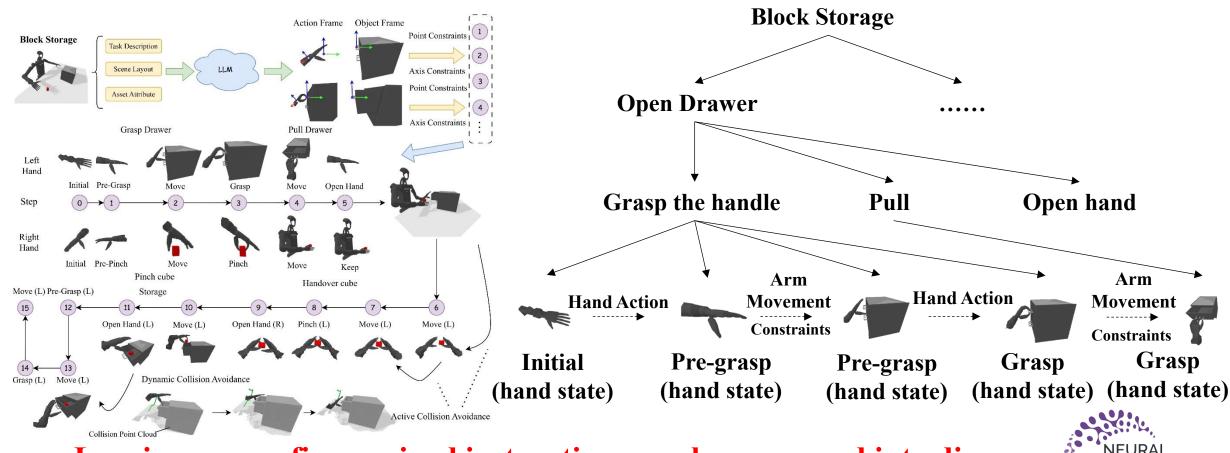





120 scenes!

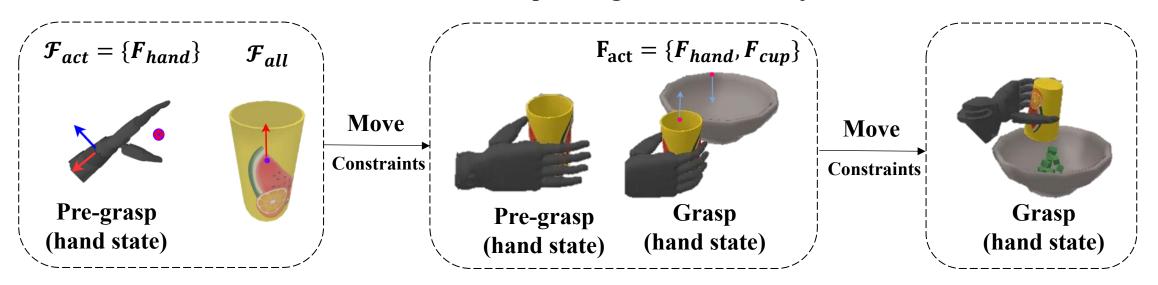


■ Demonstration Generation



■ Demonstration Generation

Less is more — fine-grained instructions can be composed into diverse manipulation tasks!



■ Demonstration Generation

How can we define constraints to achieve motion planning with different objectives?

Goal Constraints:

$$\underset{\theta_T}{\operatorname{arg\,min}} \sum_{c_i \in C^{\text{goal}}} w_i c_i(u_{\text{act}}, u_{\text{all}}) + w_{\text{reg}} \|\theta_T - \theta_{\text{nominal}}\|,$$

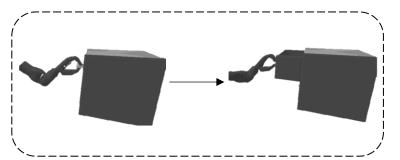
s.t.
$$\begin{cases} \mathbf{e}_T = f_{\text{FK}}(\theta_T) & \text{(Kinematic constraints)} \\ c(u_{act}, u_{all}) \in [c_{\text{lower}}, c_{\text{upper}}], \forall c \in C^{\text{goal}} & \text{(Relational action constraints)} \\ \theta_T \in \Theta_{\text{collision_free}} & \text{(Collision avoidance constraints)} \end{cases}$$

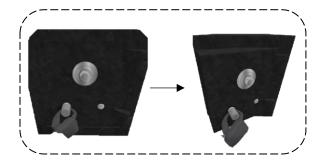
Constraints

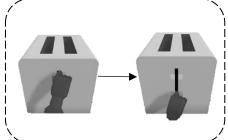
Path Constraints:

$$\underset{e \in [1, T-1]}{\operatorname{arg\,min}} \operatorname{Cost}(\theta_t), \quad \text{s.t.} \begin{cases} \mathbf{e}_t = f_{\mathsf{FK}}(\theta_t), \forall t \in [1, T-1] & (\mathsf{Kin}) \\ c(u_{act}, u_{all}) \in [c_{\mathsf{lower}}, c_{\mathsf{upper}}], \forall c \in C^{\mathsf{path}} & (\mathsf{Re}) \\ \theta_t \in \Theta_{\mathsf{collision free}}, \forall t \in [1, T-1] & (\mathsf{Collision free}) \end{cases}$$

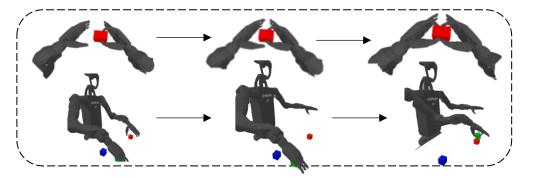
(Kinematic constraint)
(Relational action constraints),
(Collision avoidance)



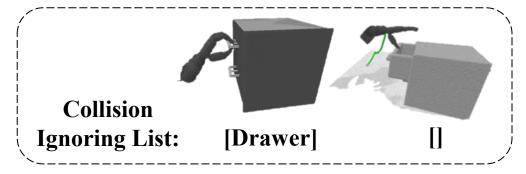



■ Demonstration Generation

Applicable to articulated objects? Yes!



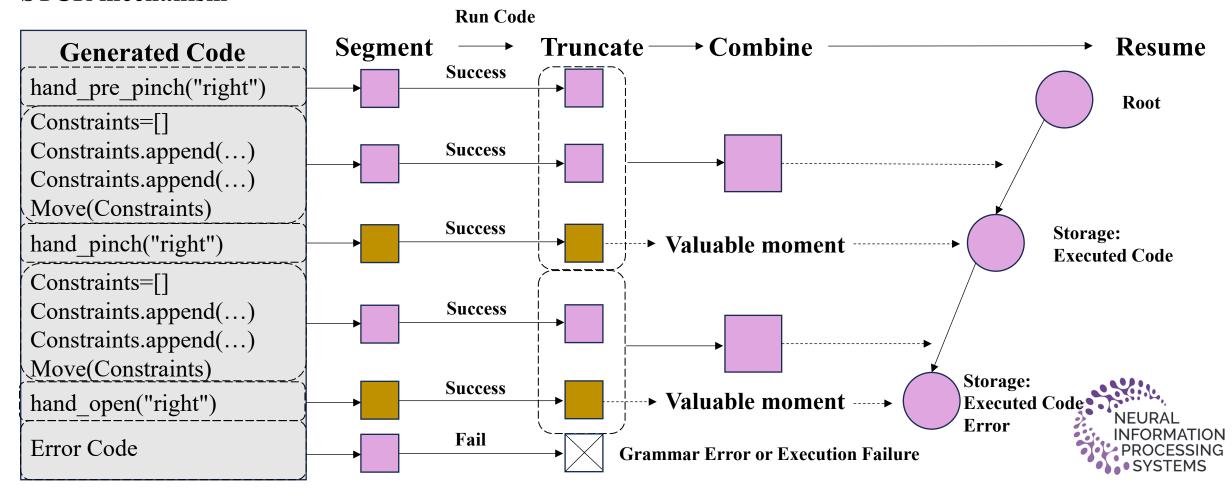
Openness: represent the degree of joint.


The extraction of key points or axes corresponding to a specific openness value is automatically implemented.

Is there collision avoidance? Yes!

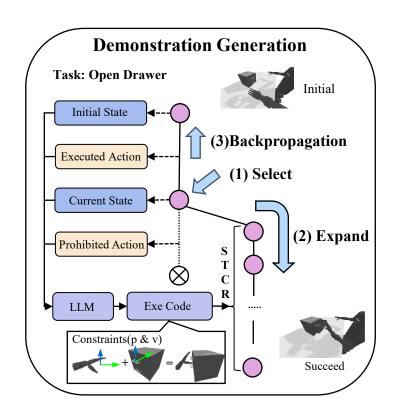
Active Collision Avoidance

Dynamic Collision Avoidance



■ Demonstration Generation

STCR mechanism



Demonstration Generation

(1) Selection

Starts from the root node and explores downwards to find the node to expand.

$$\text{SelectPolicy}(n) = \underset{S' \in \text{Children}(n) \cup \{\varnothing\}}{\operatorname{arg\,max}} Q_{\text{DUCB}}(n, S'),$$

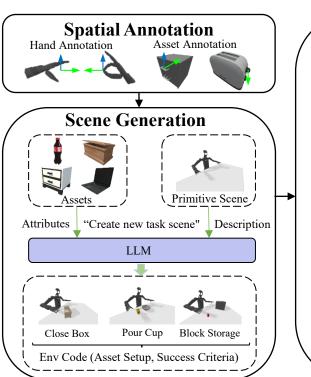
(2) Expansion

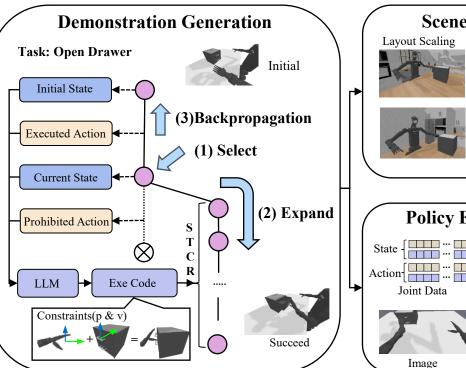
Using the information stored in the exploration node, a prompt is constructed and fed into the reasoning LLM to infer new executable code. The newly generated code will also undergo STCR processing to become a subtree.

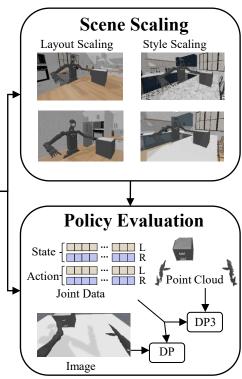
(3) Backpropagation

Updates the visited number and reward based on intrinsic exploration values, incentivizing valuable moments such as successful grasps or stable object handling.

Content

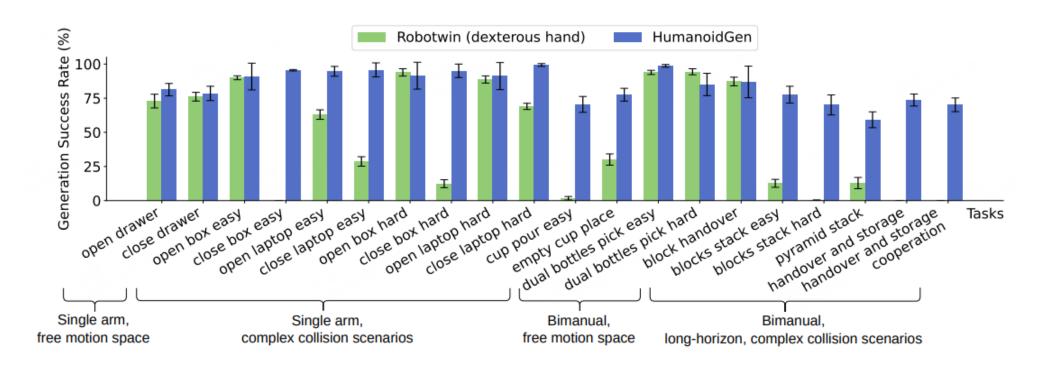



Motivation


Method

Experiments

Conclusion



Evaluation of Data Generation and Execution

Our framework outperforms RoboTwin in long-horizon and complex collision tasks, demonstrating superior dexterous manipulation performance through dynamic collision management. On average, it achieves an 81.37% higher success rate, while Robotwin fails in most long-horizon, highly collisional tasks.

Effectiveness Evaluation of MCTS

Method	Success rate (%)	Token consumption (K)		
Block Stack Single				
Non-MCTS	63.3 ± 6.24	15.3 ± 1.90		
$MCTS_{N=2}$	98.3 ± 2.36	19.3 ± 7.04		
Blocks Stack Easy	72	1987		
Non-MCTS	46.7 ± 2.36	14.8 ± 1.64		
$MCTS_{N=2}$	83.3 ± 5.56	21.6 ± 7.78		
$MCTS_{N=3}$	95.0 ± 4.08	22.8 ± 9.13		
Blocks Stack Hard		01		
Non-MCTS	18.3 ± 6.24	16.0 ± 0.92		
$MCTS_{N=8}$	78.3 ± 2.36	69.9 ± 39.24		
$MCTS_{N=12}$	98.3 ± 2.36	78.3 ± 51.75		
Pyramid Stack				
Non-MCTS	13.3 ± 6.24	16.2 ± 1.29		
$MCTS_{N=8}$	76.7 ± 4.71	80.0 ± 31.72		
$MCTS_{N=12}$	90.0 ± 4.08	89.6 ± 44.61		

Table 1: The evaluation results of applying different numbers of max MCTS exploration steps N and non-MCTS in four tasks.

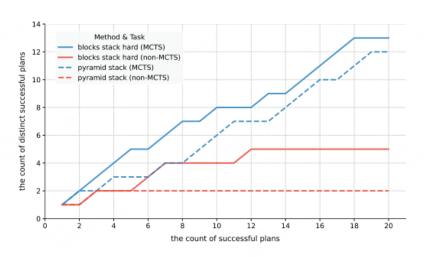
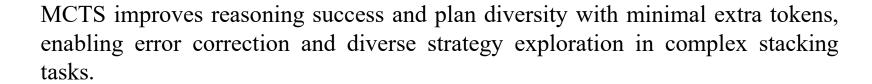
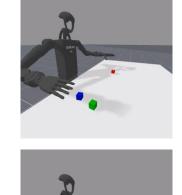
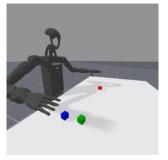




Figure 6: The variation of the count of distinct successful plans for MCTS and non-MCTS with the count of successful plans.



■ HGen-Bench Evaluation

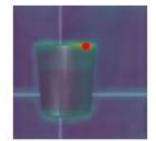
Table 3: We present the DP and DP3 results for all 20 tasks using 100, 50, and 20 trajectories generated by our method, and evaluate the success rates across 14 tasks using 3 random seeds.

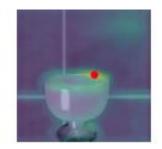
Num of Demonstrations	20	50	100		20	50	100
Blocks Stack Easy				Close Drawer			
DP3	0.0 ± 0.0	0.0 ± 0.0	22.8±16.5	DP3	83.3 ± 17.6	94.4±7.9	92.6±8.3
DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	DP	95.6 ± 3.7	100.0 ± 0.0	100.0±0.
Cup Pour Easy				Dual Bottles Pick Easy			
DP3	67.8 ± 10.8	75.6±9.6	72.2±7.9	DP3	75.9 ± 17.8	96.3±6.9	93.9±7.6
DP	0.0 ± 0.0	2.2±6.3	0.0 ± 0.0	DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Dual Bottles Pick Hard				Empty Cup Place			
DP3	88.9 ± 13.6	90.7 ± 11.4	94.4±7.9	DP3	25.0 ± 8.2	18.3 ± 4.7	33.3±7.1
DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	DP	0.0 ± 0.0	0.0 ± 0.0	6.7 ± 13.3
Open Box Easy				Open Box Hard			
DP3	85.6 ± 8.0	95.6±4.4	95.0±4.1	DP3	95.6±5.5	96.1 ± 4.6	98.3±3.3
DP	93.3 ± 13.3	100.0 ± 0.0	100.0 ± 0.0	DP	11.1 ± 19.1	93.3±9.4	100.0±0.
Open Drawer				Open Laptop Hard			
DP3	58.3 ± 8.3	76.0 ± 13.1	84.4±11.3	DP3	100.0 ± 0.0	100.0 ± 0.0	$100.0\pm0.$
DP	17.8 ± 22.0	13.3 ± 18.9	48.9±31.4	DP	15.6 ± 22.7	11.1 ± 9.9	35.6±32.
Close Box Hard				Close Laptop Easy			
DP3	88.9 ± 17.6	96.3±6.9	96.3±6.9	DP3	100.0 ± 0.0	100.0 ± 0.0	$100.0\pm0.$
DP	*82.2±22.0	*51.1±19.1	31.1±28.5	DP	37.8 ± 23.9	40.0 ± 23.1	48.9±25.
Handover and Storage				Blocks Stack Hard			
DP3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	DP3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Block Handover				Close Box Easy			
DP3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	DP3	100.0 ± 0.0	98.3±3.3	99.4±1.6
DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	DP	97.8 ± 6.3	100.0 ± 0.0	91.1±13.
Close Laptop Hard				Handover and Storage Cooperation			
DP3	92.6 ± 8.3	94.4±7.9	96.3±6.9	DP3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
DP	*46.7±13.3	*42.2±34.6	33.3 ± 26.7	DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Open Laptop Easy				Pyramid Stack			
DP3	71.1±5.7	77.2±7.5	81.1±9.4	DP3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
DP	*75.6±18.3	*71.1±16.6	60.0±16.3	DP	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0

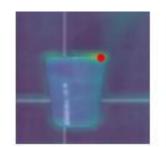
We provide evaluations of DP and DP3 on our collected dataset.

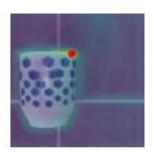
■ Other experiments

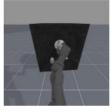
Real-World Experiments





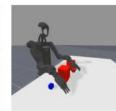



Automatic Asset Annotation



Additional Challenging Manipulation Tasks

Rotate Safe Knob


Press Toaster

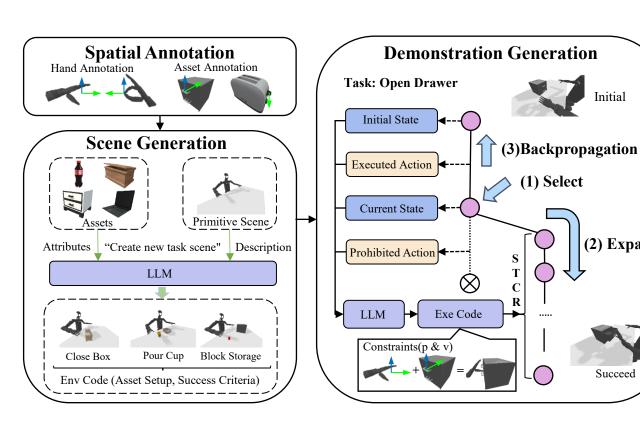
Open Safe Door

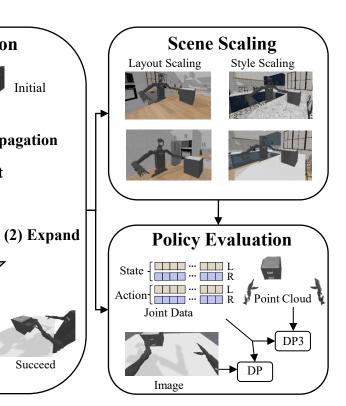
Dual Lift Pot

Blocks Stack Hard With Barrier

Content

Succeed




Motivation

Method

Experiments

Conclusion

Conclusion

We propose a complete data generation framework for bimanual dexterous manipulation.

- Home Page: https://openhumanoidgen.github.io/
- Code Project: https://github.com/TeleHuman/HumanoidGen
- Connect Me: jingzhi2021@qq.com

