

ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning

Jingyang Yil*, Jiazheng Wangl*, Sida Lil

¹ Data Science Institute, The University of Chicago *equal contribution {jingyang22, jiazhengw, listar2000}@uchicago.edu

Background & Contributions

- Large reasoning models (LRMs, e.g. OpenAI O1 models) have shown impressive performance in complicated benchmarks in math, programming, logic, etc.
- However, LRMs exhibit overthinking phenomenon that both (1) is computationally inefficient, and (2) hurts performance (see below analysis).
 - We propose ShorterBetter, a novel reinforcement learning method that guides reasoning model to autonomously learn its optimal reasoning lengths.
- We introduce novel reasoning trace analysis methods to demonstrate how ShorterBetter enhances reasoning efficiency.

Optimal Length & Sample Optimal Lengh

- A Theoretical Framework to Model Optimal Inference Length
- For a prompt x_i , let $y = (y^1, ..., y^t)$ be sampled auto-regressively from LLM, i.e., $y \sim p_{\theta}(\cdot \mid x_i)$, with $\ell(y) := t$ be its length.
- Let y_i^* be the **reference response** for x_i and \mathscr{I} be a verifier that assigns a correctness score $s_{\mathscr{I}}(y, y_i^*) \in [0, 1]$ (higher better).
- Let $c \ge 0$ be a correctness threshold and $\varepsilon \ge 0$ be probability threshold, the optimal reasoning length (OL) is defined as

$$\ell_{c,\varepsilon}^*(x_i;\boldsymbol{\theta}) := \min\{\ell(y) : y \in \mathscr{Y}_{c,\varepsilon}(x_i;\boldsymbol{\theta})\},$$

where

Avg length (tokens)

$$\mathscr{Y}_{c,\varepsilon}(x_i;\theta) := \{ y : p_{\theta}(y \mid x_i) \geq \varepsilon \land s_{\mathscr{I}}(y,y_i^*) \geq c \}.$$

▶ Interpretation: $\ell_{c,\varepsilon}^*(x_i;\theta)$ represents the minimal length at which the model reliably (probability above ε) produces a sufficiently correct (score above c) response.

A Practical Implementation of Sample-based Optimal Length

- For a prompt x_i , the LLM samples m rollouts of candidate responses $G(x_i) = \{y_1, y_2, \dots, y_n\}.$
- We then define the sample optimal length (SOL) for $G(x_i)$ as:

$$\ell^{\text{SOL}}(G(x_i)) = \begin{cases} \min_{y_j \in G(x_i): \mathbb{I}(y_j = y_i^*) = 1} \ell(y_j) & \text{if at least one correct response exists} \\ \frac{1}{n} \sum_{j=1}^n \ell(y_j) & \text{otherwise} \end{cases}$$

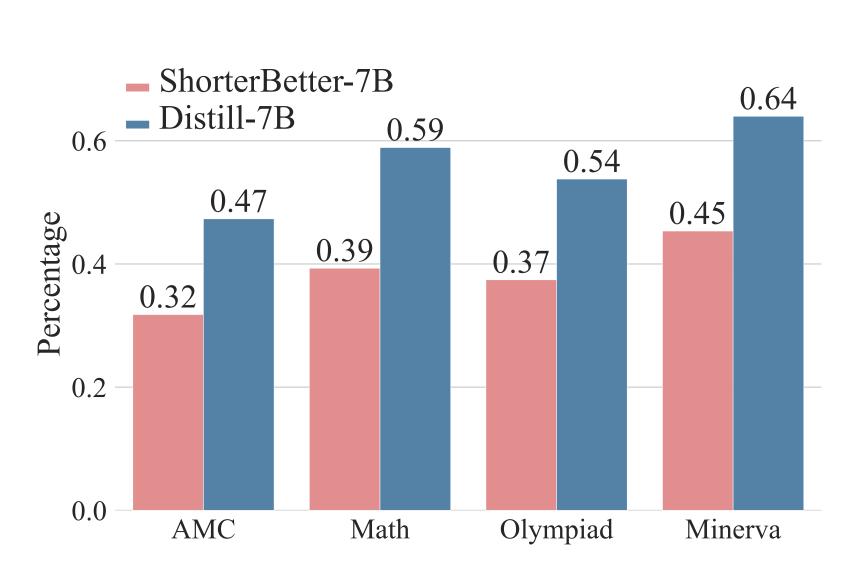
ightharpoonup The corresponding **reward function** for y_i is:

$$r(y_j) = \alpha \cdot \mathbb{I}(y_j = y_i^*) - \beta \cdot \left| \ell(y_j) - \ell^{\text{SOL}}(G(x_i)) \right|,$$
 where α, β are hyperparameters balancing correctness and length.

Correctness reward

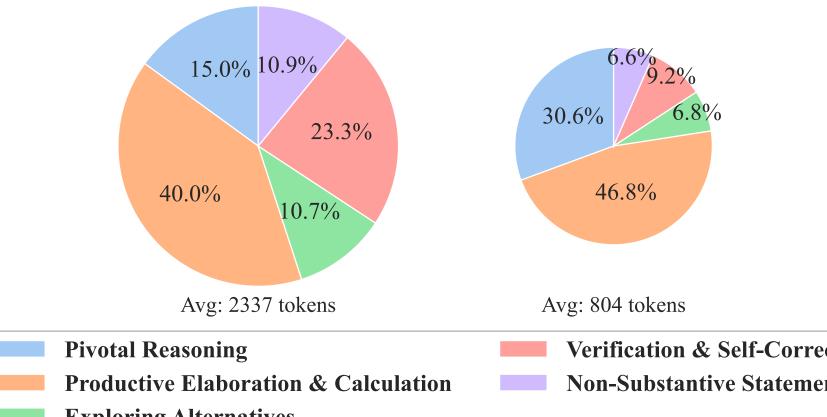
Length reward

Case Study



Q Output Length after First **Correct Answer:**

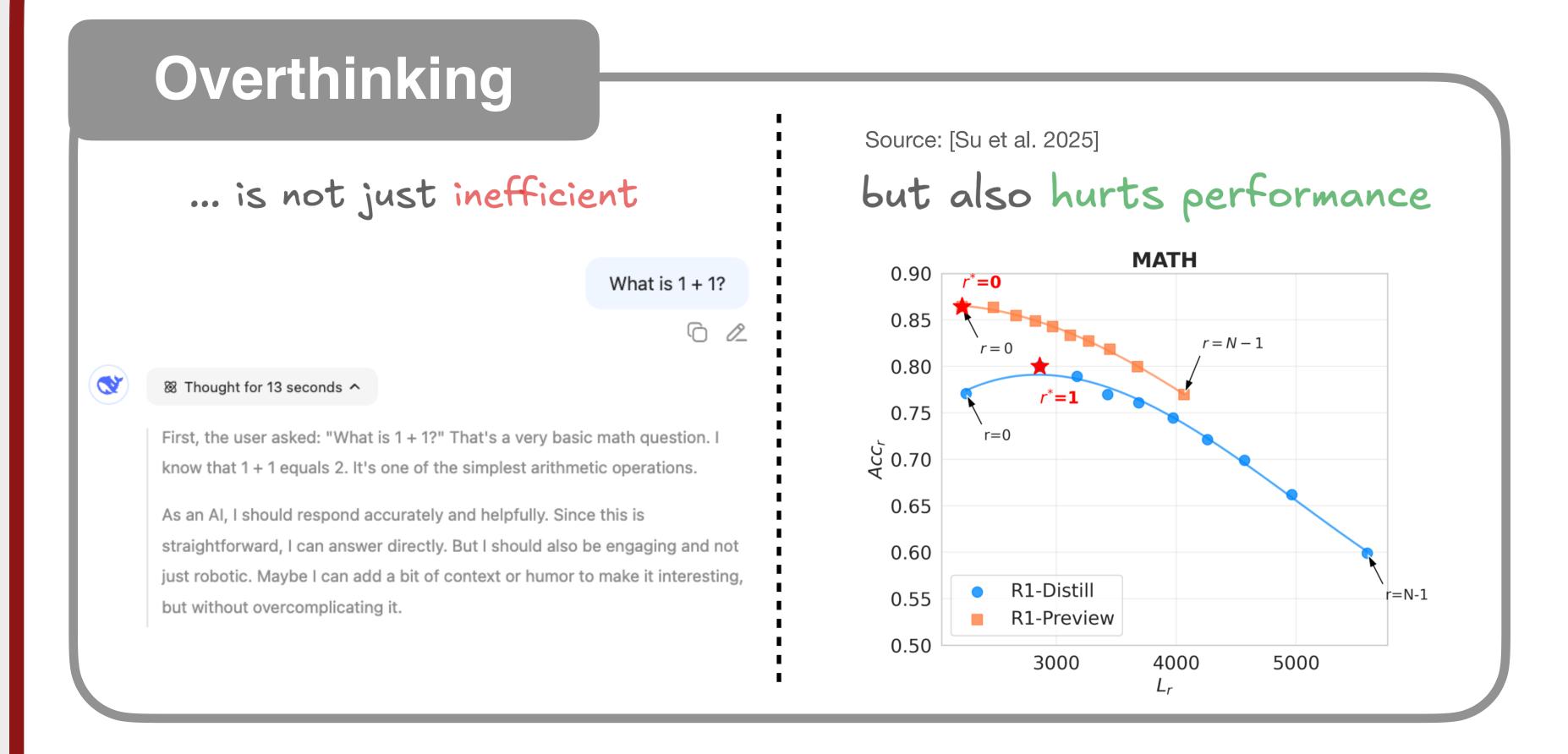
ShorterBetter generates 15–20% fewer tokens after the first correct answer, indicating less redundant self-verification compared to the DeepSeek-Distill model.

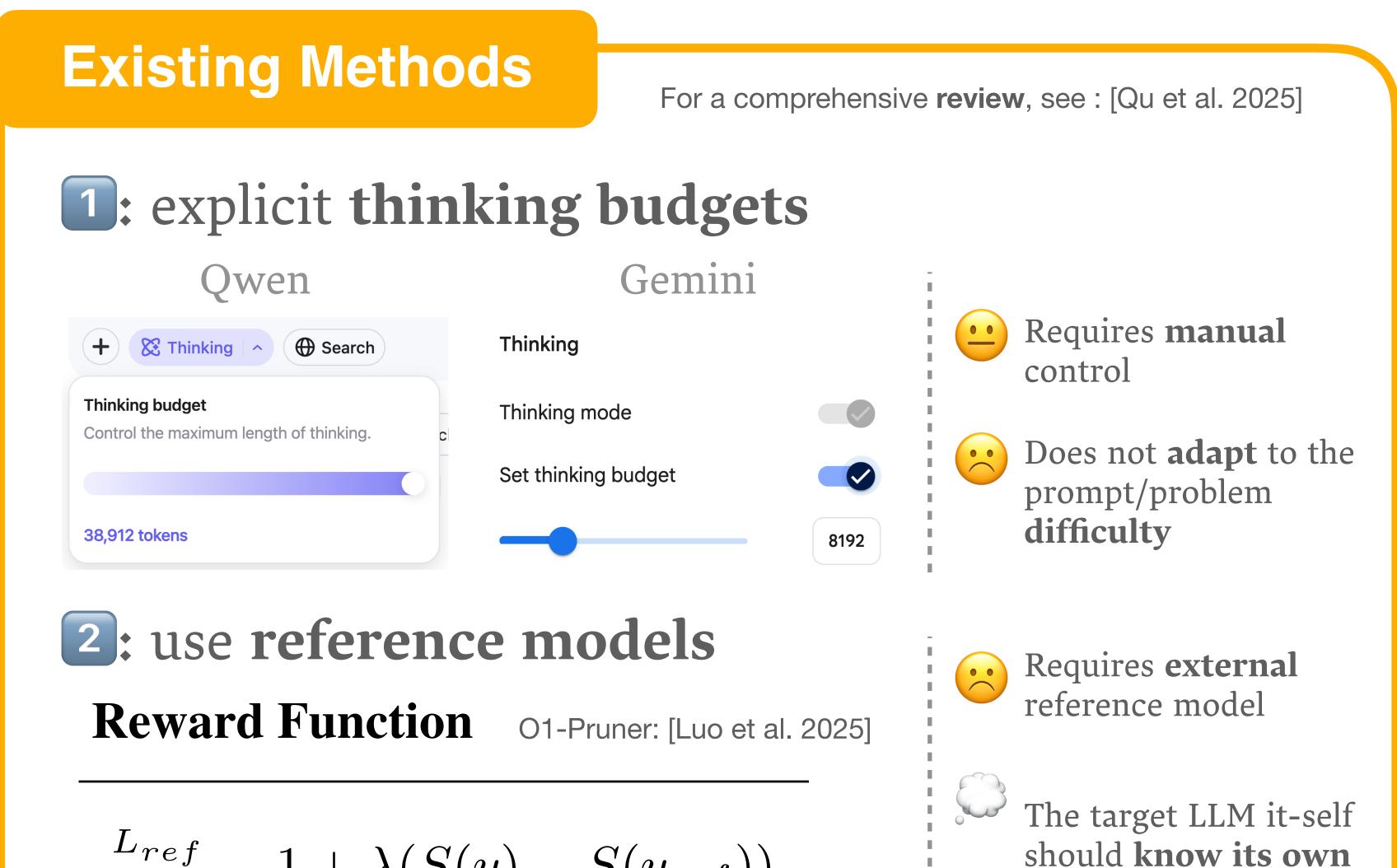


Breakdown of Reasoning Traces:

ShorterBetter produces more concise, solution-driven reasoning by increasing pivotal steps and productive calculations, while reducing filler, self-corrections, and exploratory detours.

Efficient Reasoning





Correctness reward

Length reward

"budget"the best

To find the acute angle between two lines, ...so the final answer is 45° What is the degree measure $R_1 = 0.6$ of the acute angle formed by lines with slopes 2 and 1/3? 2 Let me recall the trick to solve this problem type. Start by checking intersection... $R_2 = -0.3$ \longrightarrow ...we finally have arctan(2)≈63° I = N Here is a concise way to find the angle.. \approx R_N= 1.0 **→** ' ...and we easily obtain the result: 45° 417 tokens sample optimal length GRPO

Results **OLYMPIAD-BENCH MINERVA** Avg length (tokens) Avg length (tokens) Avg length (tokens) Avg length (tokens) **MATHOA LIVECODEBENCH** \Rightarrow 2000 4000 6000 8000 10000

Avg length (tokens)

DeepSeek-R1-Distill-Qwen-7B

Qwen2.5-7B-Instruct

Avg length (tokens)

ShorterBetter-7B (α =2)

Training Efficient-7B

Avg length (tokens)

O1-pruner-7B

Compare performance of 7Bscale models across diverse benchmarks:

Metrics: Report both accuracy and output length.

Models:

- DeepSeek-R1-Distill-Qwen-7B
- Qwen2.5-7B-Instruct (nonreasoning baseline)
- ShorterBetter-7B with $\alpha = 2$
- Training Efficient-7B (Arora & Zanette, 2025)
- O1-Pruner (Luo et al., 2025a)

Ablation

- ! Naively adopting shortest response length destabilizes training
- Sample Optimal Length (SOL) balances correctness and conciseness

Resource

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-thinking: An empirical study of reasoning length and correctness in llms. arXiv preprint arXiv:2505.00127, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint arXiv:2502.04463, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. arXiv preprint arXiv:2501.12570, 2025a