Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning Balancing Reasoning Length and Accuracy in LVLMs

Wenyi Xiao Leilei Gan

School of Software Technology Zhejiang University

NeurIPS 2025

Outline

- Introduction
- 2 Pilot Experiments
- FAST-GRPO Method
- 4 Experiments
- Conclusion

Background: Rise of Slow-Thinking Reasoning

- Slow-thinking models show remarkable capabilities
 - OpenAl o1, DeepSeek-R1, Qwen QwQ
 - Solve complex tasks through deliberate reasoning

Slow-thinking in LVLMs

- SFT-RL two-stage methods
- RL-only methods

Key Challenges

- Limited reasoning length scaling (-20% to +10%)
- Overthinking phenomenon
- Marginal accuracy improvements

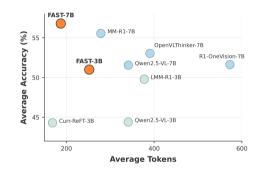


Figure: FAST achieves higher accuracy with shorter reasoning

Problem: Overthinking Phenomenon

Table: Comparison of accuracy and response length on Geometry 3K test set

Test Qwen2.5-VL		R1-Or	neVision	FAST		
				Len.		
Easy	72.7	318	69.5	623	78.2	
Med	33.9	406	40.4	623 661	49.2	220
Hard	5.5	412	10.2	835	12.3	304
All	37.7	378	40.3	731	46.4	239

Key Findings

- R1-OneVision produces 2× longer reasoning chains
- Overthinking on simple questions degrades accuracy (69.5% vs. 72.7%)
- Need for adaptive fast-slow thinking mechanism

Length Rewards Analysis

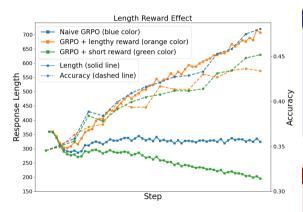


Figure: Effect of length rewards on reasoning

Experimental Setup

- Base model: Qwen2.5-VL
- Dataset: Geometry 3K
- Three strategies:
 - GRPO + lengthy reward
 - GRPO + short reward
 - Naive GRPO

Observation 1

LVLMs can produce significantly different reasoning lengths (180-700 tokens) via length rewards with modest accuracy changes $(\pm 3\%)$

Data Distribution Analysis

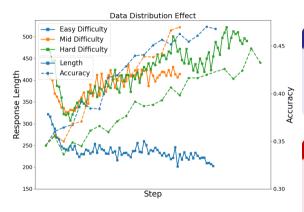


Figure: Effect of data distribution on reasoning

Difficulty Stratification

- Easy: $0.75 \le passrate@8$
- Medium: 0.25 < passrate@8 < 0.75
- Hard: passrate@8 ≤ 0.25

Observation 2

Question difficulty acts as implicit regulator of reasoning length, suggesting strategic data distribution for adaptive thinking

Method Overview

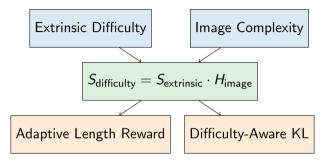


Figure: FAST-GRPO Framework

Core Components

- **Multimodal Question Difficulty Estimation**: Extrinsic + Intrinsic
- 2 Slow-to-Fast Sampling: Dynamic training data distribution
- **§ FAST-GRPO Algorithm**: Adaptive rewards + difficulty-aware regularization

Difficulty Estimation

Extrinsic Difficulty

$$S_{\sf extrinsic} = 1 - {\sf passrate@k}$$

- Reflects model's current capability
- Computed online during training

Intrinsic Difficulty

$$H_{\mathsf{image}} = -rac{1}{P}\sum_{p=1}^{P}H(g_p)-H(v)$$

- GLCM entropy: texture complexity
- ViT entropy: semantic complexity

Combined Difficulty Metric

$$S_{\text{difficulty}} = S_{\text{extrinsic}} \cdot H_{\text{image}}$$

Slow-to-Fast Sampling

- Early Epochs: Exclude easy samples $(S_{\text{extrinsic}} \leq 0.25)$
- Later Epochs: Exclude hard samples $(S_{\text{extrinsic}} \ge 0.75)$

First develop slow thinking, then learn adaptive fast thinking

FAST-GRPO Algorithm

Adaptive Length Reward

$$r_t = egin{cases} 1 - rac{L}{L_{ ext{avg}}} & ext{if } S_d < heta, r_a = 1 \ \min(rac{L}{L_{ ext{avg}}} - 1, 1) & ext{if } S_d \geq heta, r_a = 0 \ 0 & ext{otherwise} \end{cases}$$

- Encourage brevity for simple correct
- Encourage detail for complex incorrect
- Cap reward at 1 to prevent verbosity

Difficulty-Aware KL Regularization

$$eta_d = eta_{\min} + (eta_{\max} - eta_{\min})(1 - S_{\text{ext}})$$

- High difficulty: $\beta_d \to \beta_{\min}$ (explore)
- Low difficulty: $\beta_d \to \beta_{\sf max}$ (exploit)

Gradient Coefficient

$$extit{GC} = \hat{A}_i + eta_d \left(rac{\pi_{ ext{ref}}(o_i|oldsymbol{q})}{\pi_{oldsymbol{ heta}}(o_i|oldsymbol{q})} - 1
ight)$$

Main Results: Reasoning Accuracy

Table: Accuracy comparison across 7 benchmarks (See full results in Paper)

Method	MathVis.	MathVer.	MathVista	MM-Math	WeMath	DynaMath	MM-Vet	Avg.
GPT-4o	30.4	49.9	63.8	31.8	69.0	63.7	80.8	55.6
Claude-3.5	37.9	46.3	67.7	-	-	64.8	68.7	-
Qwen2.5-VL-7B	25.6	46.9	68.2	34.1	61.0	58.0	67.1	51.6
R1-OneVision	29.9	46.4	64.1	34.1	61.8	53.5	71.6	51.6
OpenVLThinker	29.6	47.9	70.2	33.1	64.5	57.4	68.5	53.0
FAST-7B	30.6	50.6	73.8	44.3	68.8	58.3	71.2	56.8

Key Achievements

- SOTA on MathVista: 73.8 (surpassing GPT-4o)
- 10%+ average improvement over base model
- Strong performance on challenging benchmarks

Main Results: Reasoning Length (See full results in Paper)

Table: Average reasoning length (tokens) across 7 benchmarks

Method	MathVis.	MathVer.	${\sf MathVista}$	MM-Math	${\sf WeMath}$	DynaMath	MM-Vet	Avg.
Qwen2.5-VL-7B	340	378	318	412	356	324	298	346
R1-OneVision	689	731	623	835	756	712	680	718
OpenVLThinker	402	415	389	456	420	398	375	408
MM-R1	512	556	489	623	578	534	502	542
FAST-7B	189	239	175	304	256	220	195	225

Key Findings

- 67.3% reduction compared to R1-OneVision
- Adaptive reasoning: Harder problems get more tokens automatically
- Efficiency gain: Better accuracy with shorter responses

Ablation Study

Table: Component contributions

Model	MathVista	MathV.	MathVer.	Len.
Qwen-2.5-VL-7B	68.2	25.6	46.9	340
FAST	73.8	30.6	50.6	176
w/o Data Samp.	69.9	27.2	48.4	257
w/o Think. Rew.	73.6	31.5	45.9	302
w/o Diff. Aware	72.0	29.5	49.2	172
Naive GRPO	67.2	25.3	47.6	205

Key Findings

- Data Sampling: Critical for all benchmarks
- Thinking Reward: 42% relative length reduction
- **Difficulty-Aware**: 1.8 points gain on MathVista

Sampling Strategy Effect

- Fast-to-Slow: Performance degradation
- Dynamic: 80% longer responses
- Slow-to-Fast: Optimal balance

Error Analysis

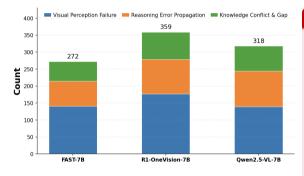


Figure: Error type distribution

Three Main Error Types

- **OVISUAL Perception Failures** (50%)
 - Incorrect visual cue extraction
 - Spatial relation misinterpretation
- **Q** Reasoning Error Propagation (27%)
 - Mid-chain mistakes
 - Logic chain breakage
- **Solution Material Series May 19 (19%) May 19 (19%)**
 - Language priors override visual evidence
 - Domain knowledge insufficiency

Case Study: Visual Perception Failure (More cases & insights in Paper)

Figure: Angle measurement problem

Problem

Find the angle $\angle ABC$ in the figure

Model Responses

- Ground Truth: 50°
- Base Model: "I see 40°" (incorrect reading)
- R1-OneVision: Long reasoning but misread angle
- **FAST**: Correctly identifies 50°

Key Issue

Visual perception errors propagate through entire reasoning chain

Main Contributions

- Identified and analyzed overthinking in LVLMs
 - First systematic study of LVLM reasoning length
 - Revealed decoupling between length and accuracy
- Proposed FAST-GRPO framework
 - Multimodal question difficulty estimation
 - Adaptive fast-slow thinking mechanism
 - Difficulty-aware reinforcement learning
- Achieved dual improvements
 - 10%+ accuracy improvement
 - 32.7-67.3% reasoning length reduction
 - SOTA on multiple benchmarks

Limitations and Future Work

Current Limitations

- Computational constraints: Evaluated up to 32B parameters
- Visual perception bottleneck: 50%+ errors from visual misinterpretation
- Data scale: 18K training samples relatively small

Future Directions

- Scale to larger models (70B+ parameters)
- Improve visual perception
 - Fine-grained OCR
 - Accurate chart value extraction
 - Robust spatial grounding
- Explore other modalities (audio, video)
- Online learning and continuous adaptation

Key Insights

Adaptive Fast-Slow Thinking: The Future of LVLM Reasoning

Traditional Approach	FAST Approach
One-size-fits-all reasoning	 Problem-aware reasoning
 Fixed reasoning depth 	 Adaptive depth based on difficulty
 Either too brief or too verbose 	ullet Simple $ o$ Fast thinking

Complex → Slow thinking

Why This Matters

Inefficient resource utilization

- **① Efficiency**: 67% shorter responses with better accuracy
- 2 Intelligence: Mimics human cognitive patterns
- **Scalability**: Better resource allocation for real applications

Thank You!

Questions & Discussion

Code & Models: https://github.com/Mr-Loevan/FAST

Contact: wenyixiao@zju.edu.cn leileigan@zju.edu.cn