

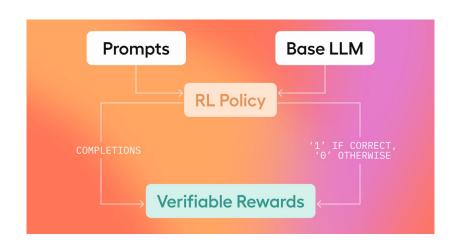
Presenter: Fuxiang Zhang
NeurIPS 2025

Fuxiang Zhang^{1,2} Jiacheng Xu^{1,2} Chaojie Wang² Ce Cui² Yang Liu² Bo An^{1,2*}

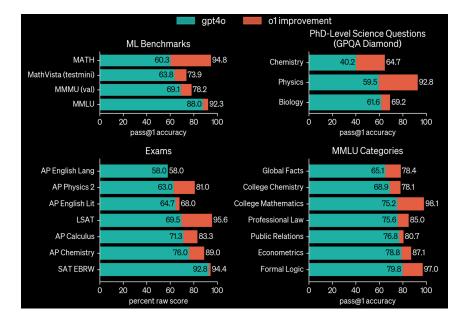
¹ Nanyang Technological University, Singapore ² Skywork AI

Large Language Models (LLM) for Reasoning

- LLMs are trained with Reinforcement Learning (RL)
 - Learned from the correctness of solutions (a *verifiable* reward)
 - Coding, mathematical problems, question-answering



RL from Verifiable Rewards

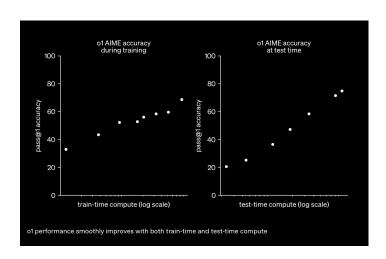


Reasoning model (o1) vs. non-reasoning model (gpt4o)

https://openai.com/index/learning-to-reason-with-llms

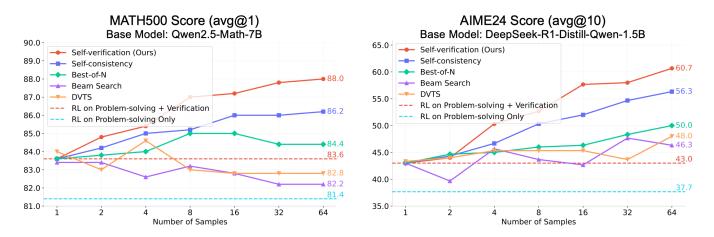
Test-time Scaling of Reasoning Models

- Test-time improvement of LLMs:
 - Generate multiple answers and
 - Select the most consistent one
 - Use an external verifier to choose the answer with the highest score
- Two paths of LLM scaling:
 - Training-time compute
 - Test-time compute
- Can we find a synergy of them?



Synergize Training- and Test-time Compute

- Can we find a synergy of training- and test-time compute?
 - Simple combination does NOT work!

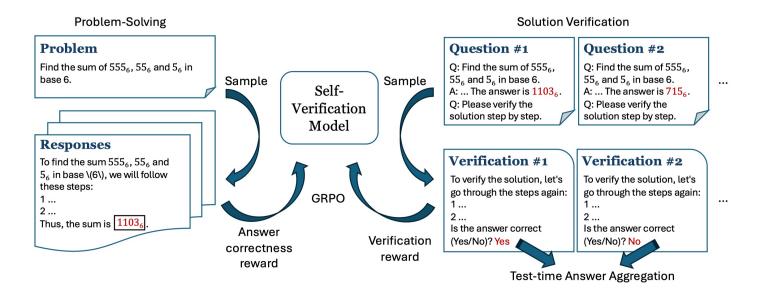


 External verifiers haven't seen the solutions of RL models before (distribution shift)

Self-Verification Paradigm

- How to deal with the distribution shift issue?
 - Train a unified model for both problem-solving and verification

The model itself knows how to verify its answer better.



Incentivizing the LLM to Verify Answers

- Generative Verification:
 - Ask the model to generate predicates and judgments
 - [thinking] Is the answer correct? (Yes/No)
- Keep the original capability as a reasoning model
 - A Unified RL process
 - Train problem-solving and verification simultaneously
 - Policy-aligned online data buffer
 - Dynamic verification reward

Question #1

Q: Find the sum of 555₆, 55₆ and 5₆ in base 6. A: ... The answer is 1103₆. Q: Please verify the solution step by step.

Verification #1

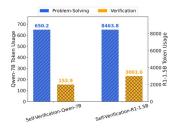
To verify the solution, let's go through the steps again: 1 ... 2 ... Is the answer correct (Yes/No)? Yes

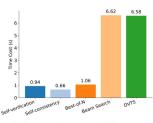
Experiment Results

Table 1: Average greedy-decoding scores of different models on math reasoning benchmarks after post-training. The best scores from each model series are highlighted in bold. For AIME24, AIME25, and AMC23, we report the average scores over 10 samples for each problem.

Model	MATH500	AIME24 (avg@10)	AIME25 (avg@10)	AMC23 (avg@10)	Olympiad Bench
Model Series: Qwen2.5-Math-7B					
Self-Verification-Qwen-7B (Ours) (Problem-solving + verification)	83.60	20.00	16.67	63.75	34.81
Qwen2.5-Math-7B (Base model)	62.00	14.67	5.00	45.25	17.63
GRPO-Qwen-7B (Problem-solving Only)	81.40	19.67	15.67	65.50	32.89
SimpleRL-Qwen-Math-7B ([28])	80.80	23.33	10.00	63.75	32.15
Model Series: DeepSeek-R1-Distill-Qwen-1.5B					
Self-Verification-R1-1.5B (Ours) (Problem-solving + verification)	87.00	43.00	31.33	77.50	44.30
R1-Distill-Qwen-1.5B (Base model)	80.00	24.33	25.00	64.25	32.89
GRPO-R1-1.5B (Problem-solving only)	87.00	37.67	26.67	72.50	40.74
DeepScaleR-1.5B-Preview ([29])	83.00	37.00	31.00	77.25	43.56

Better greedy-decoding scores after RL!





problem-solving and verification tasks.

Figure 3: Token usage comparison between Figure 4: Average time cost of different test-time scaling methods per problem from MATH500.

Efficient token usage and time cost!

Table 2: The performance of different models on verifying MATH500 solutions generated by the Self-Verification-Qwen-7B model. We highlight the best scores from the open-source models in bold.

Category	Method	Accuracy	F1 Score
Open-source Models (~7B)	Self-Verification-Qwen-7B (Ours) Qwen2.5-Math-7B (Base model) Llama-3.1-8B-Instruct	87.20 73.20 67.00	92.83 84.93 78.20
Proprietary Models	GPT-40 Claude-3.7-Sonnet DeepSeek-v3	85.20 90.20 89.00	91.57 94.46 93.73

Table 3: The performance of different models on verifying AIME24 solutions generated by the Self-Verification-R1-1.5B model. We highlight the best scores from the open-source models in bold.

Category	Method	Accuracy	F1 Score
Open-source Models (1.5B or ~7B)	Self-Verification-R1-1.5B (Ours) R1-Distill-Qwen-1.5B (Base model) R1-Distill-Qwen-7B	56.67 38.00 46.00	67.72 49.46 59.50
	Llama-3.1-8B-Instruct GPT-40	55.67	45.71 65.54
Proprietary Models	Claude-3.7-Sonnet DeepSeek-v3	64.33 57.67	71.16 66.67

Better verification accuracy even than GPT-4o!

Table 4: Average test-time scaling scores of different methods on various math reasoning benchmarks. All the test-time scaling methods have a budget of 16 samples for each problem. The best scores from each model series are highlighted in bold. For AIME24, AIME25, and AMC23, we report the average scores over 10 samples for each problem.

Method@16	MATH500	AIME24 (avg@10)	AIME25 (avg@10)	AMC23 (avg@10)	Olympiad Bench	
Model Series: Qwen2.5-Math-7B						
Self-Verification (Ours)	87.20	26.67	19.00	73.25	39.70	
Self-Consistency	86.00	23.67	21.67	71.25	39.11	
Best-of-N	85.00	23.33	16.67	64.25	37.92	
Beam Search	82.80	21.00	15.00	67.25	35.71	
DVTS	82.80	21.67	20.33	67.50	35.85	
Model Series: DeepSeek-R1-Distill-Qwen-1.5B						
Self-Verification (Ours)	93.60	57.67	37.67	92.00	50.96	
Self-Consistency	91.00	52.00	36.67	87.50	47.56	
Best-of-N	86.00	46.33	33.67	83.75	43.41	
Beam Search	88.40	42.67	33.00	85.25	44.59	
DVTS	90.80	45.33	32.33	82.50	45.18	

Better test-time performance using 16 generations!