

SynCL: A Synergistic Training Strategy with Instance-Aware Contrastive Learning for End-to-End Multi-Camera 3D Tracking

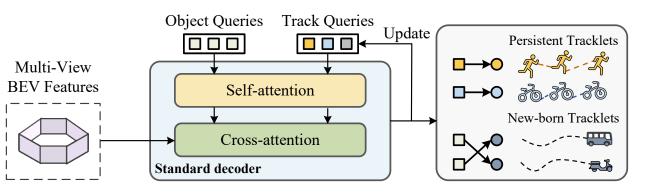
Shubo Lin · Yutong Kou · Zirui wu · Shaoru wang· Bing Li · Weiming Hu · Jin Gao

Institute of Automation, Chinese Academy of Sciences

Beijing Key Laboratory of Super Intelligent Security of Multi-Modal Information People Al

Background and Overview

Multi-camera Tracking Pipeline



Single-Frame

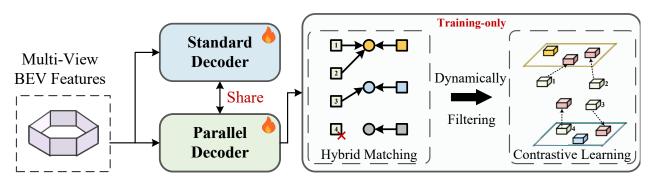
Conflict in
Optimization

Object
Queries

Inter-temporal
Tracking

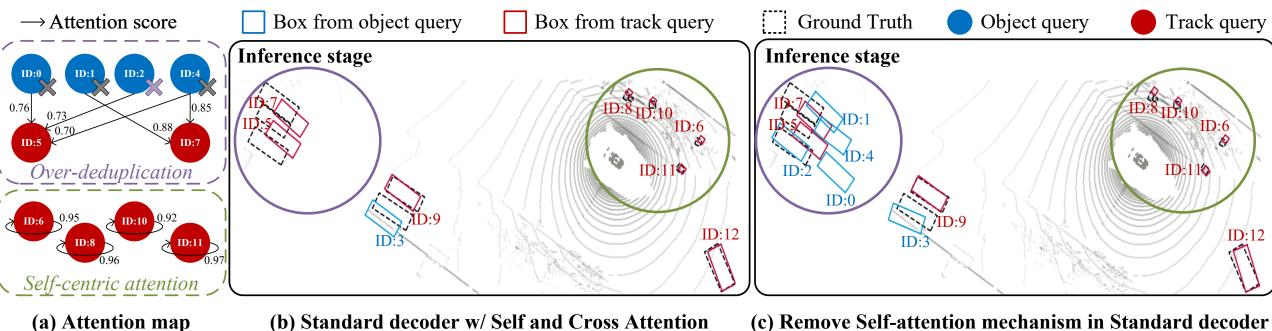
Track
Queries

Our plug-and-play training strategy



Can we address the optimization difficulties by a joint training paradigm without affecting inference speed?

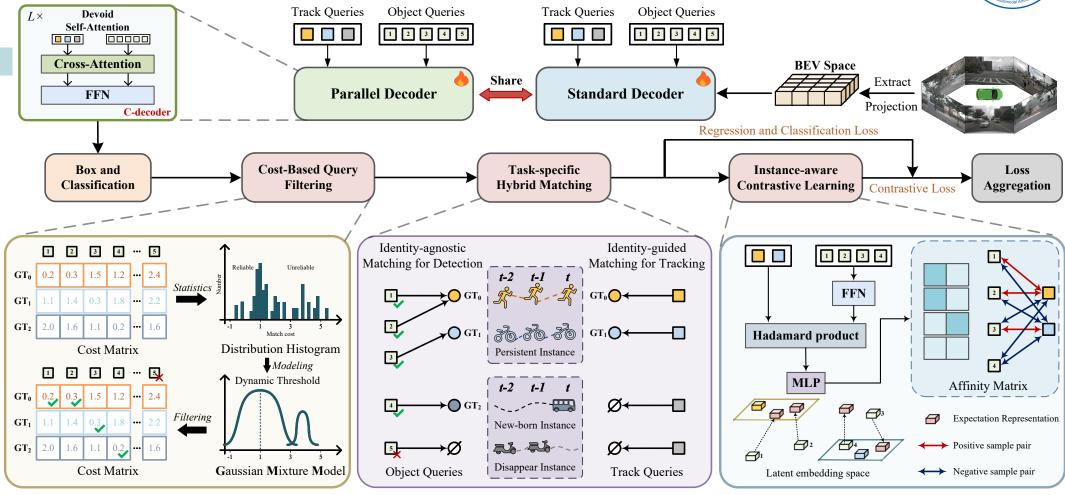
Motivations



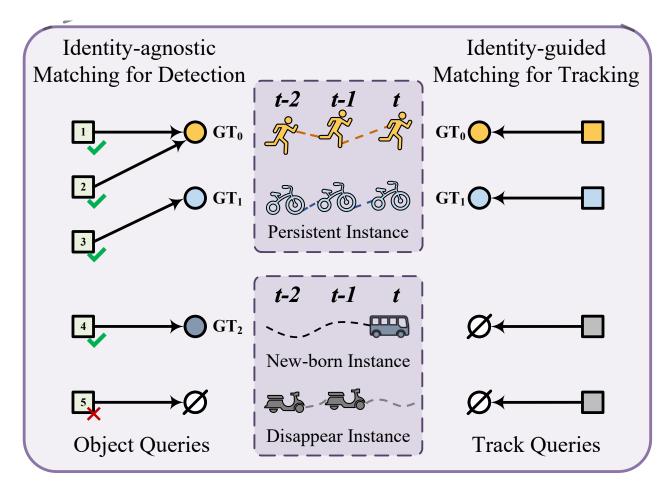
• Inconspicuous characteristics of self-attention mechanism

Over-deduplication for object queries

Self-centric attention for track queries

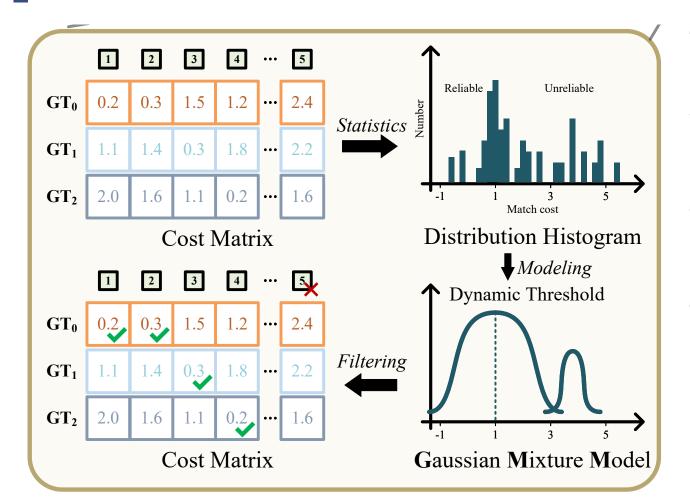


Step 1: Constructing weight-shared parallel decoder w/o self-attention



- One-to-many matching for object queries
 - Recovering high quality candidate boxes overlooked by self-attention
 - Speed up the convergence
- One-to-one matching for track queries
 - Identity-guided ground truth assignment to ensure ID-consistent tracking
 - Background assignment to manage the life cycle of disappear instance

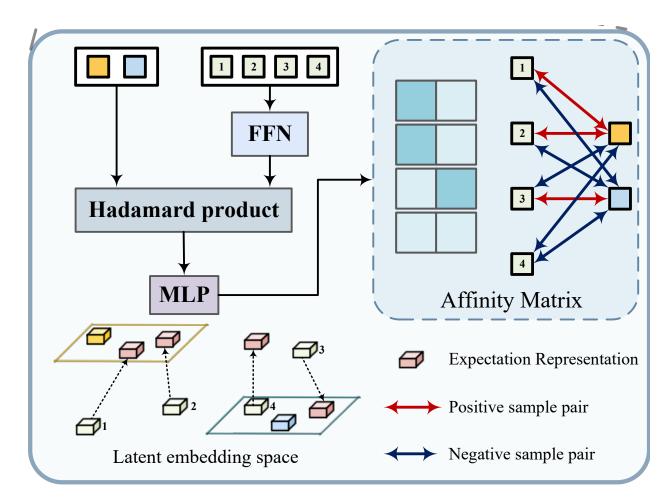
Step 2: Task-specific Hybrid matching in parallel decoder



		Detection				
Method	AMOTA	AMOTP↓	Recall	NDS	mAP	
IoU-based ATSS [41] SimOTA [42]	39.3% 42.8%	1.367 1.323	., ,,	47.0% 49.2%	0.10,1	
Cost-based DETA [43] GMM (ours)	43.1% 44.7 %	1.320 1.262		49.4% 49.7 %		

Dynamic and cost-based method is best for camera-only 3D perception

Step 3: Dynamic Query Filtering for object queries



- Knowledge transfer by representation alignment for object and track queries
- To alleviate the issue of insufficient sample pairs, we utilize kernel-based contrastive learning:

$$\mathcal{L}_{CL}(\mathcal{K};\tau) = -\log \frac{\exp(\mathcal{K}[e_i^{obj}, e_j^{trk}]/\tau)}{\sum_{k=1, k \neq j}^{N} \exp(\mathcal{K}[e_i^{obj}, e_k^{trk}]/\tau)}$$

$$\mathcal{K}[e^{obj}, e^{trk}] = \text{MLP}\left(\left\langle (\text{FFN}(e^{obj}), e^{trk})\right\rangle_{\mathcal{H}}\right)$$

Step 4: Instance-aware Contrastive Learning for both queries

Results

nuScenes validation set

				Tracking					Detection			
Method	Backbone	Detector	Resolution	AMOTA	AMOTP↓	Recall	MOTA	IDS↓	FP↓	FN↓	NDS	mAP
MUTR3D* [4]	R101	DETR3D	900 × 1600	32.1%	1.448	45.2%	28.3%	474	15269	43828	-	-
SynCL (ours)	R101	DETR3D	900 × 1600	35.8%	1.391	49.2%	32.9%	588	14311	40740	-	-
PF-Track [5]	V2-99	PETR	320 × 800	40.8%	1.343	50.7%	37.6%	166	15288	40398	47.7%	37.8%
SynCL (ours)	V2-99	PETR	320×800	44.7%	1.262	56.5%	40.8%	203	15344	36801	49.7%	39.6%
Baseline#1 [5]	V2-99	PETRv2	320 × 800	43.2%	1.272	55.0%	40.6%	173	14106	37065	50.4%	41.0%
SynCL (ours)	V2-99	PETRv2	320×800	45.7%	1.260	56.8%	43.0%	170	13411	36756	51.1%	42.0%
Baseline#2 [4]	V2-99	Stream	320 × 800	49.6%	1.164	57.3%	42.9%	411	13962	33526	57.6%	48.5%
SynCL (ours)	V2-99	Stream	320×800	51.8%	1.149	58.8 %	45.2%	540	13639	33368	58.7 %	49.2%

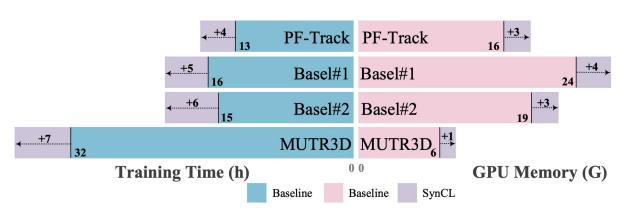
Method	Backbone	Detector	Resolution	AMOTA	AMOTP↓	Recall	МОТА	IDS↓	FP↓	FN↓	FPS
CC-3DT [39]	R101	BEVFormer	900 × 1600	42.9%	1.257	53.4%	38.5%	2219	-	-	-
DQTrack [11]	V2-99	PETRv2	320×800	44.6%	1.251	-	-	1193	-	-	8.6
MUTR3D* [4]	V2-99	PETR	640×1600	44.3%	1.299	55.2%	41.6%	175	11943	36861	6.1
PF-Track [5]	V2-99	PETR	640×1600	47.9%	1.227	59.0%	43.5%	181	16149	32778	5.2
ADATrack++ [7]	V2-99	PETR	640×1600	50.4%	1.197	60.8%	44.5%	613	14839	30616	3.2
OneTrack [8]	V2-99	Stream	640×1600	54.8%	1.088	61.8%	47.9%	389	-	-	-
SynCL (ours)	V2-99	PETR	640 × 1600	50.7%	1.183	61.3%	46.2%	248	14506	30577	5.2
SynCL (ours)	V2-99	Stream	640×1600	58.9 %	1.016	64.0%	51.5%	652	13946	27330	5.7

nuScenes test set

Method	E2E	AMOTA	AMOTP↓	Recall	МОТА
CC-3DT [39]	X	41.0%	1.274	53.4%	38.5%
PF-Track [5]	1	43.4%	1.252	53.8%	37.8%
STAR-Track [24]	1	43.9%	1.256	56.2%	40.6%
ADATrack++ [7]	1	50.0%	1.144	59.5%	45.6%
DQTrack [11]	✓	52.3%	1.096	62.2%	44.4%
OneTrack [8]	1	55.4%	1.021	60.8%	46.1%
DORT [18]	X	57.6%	0.951	63.4%	48.4%
SynCL (ours)	1	58.8%	0.976	67.1%	50.4%

- Consistent improvements over four baselines with different detectors and tracking frameworks
- Achieving new state-of-the-art performance for the multi-camera 3D MOT task

Visualization



Computation and memory complexity

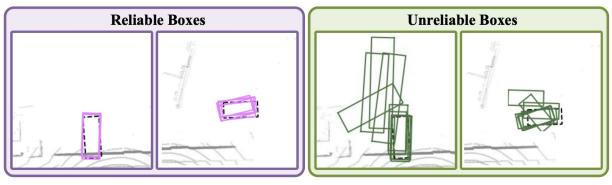
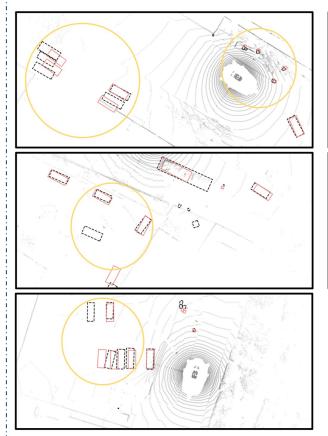
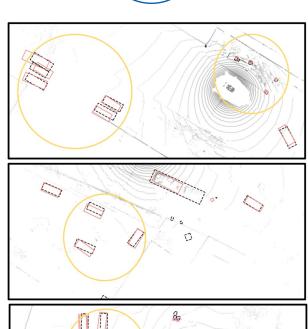
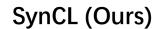


Illustration of Dynamic Query Filtering







Conclusion

An synergistic training strategy for End-to-End Multi-Camera 3D Tracking

- Reveal the imperceptible effect of the self-attention mechanism across different queries.
- Design a training strategy, implementing dynamic filtering-based hybrid matching and instance-aware contrastive learning.
- Brought remarkable improvements over various tracking-by-attention baselines and achieved new state-of-the-art performance.

Paper

Code

