

Object-Centric Representation Learning for Enhanced semantic 3D scene graph Prediction

KunHo Heo*¹, GiHyeon Kim*¹, SuYeon Kim¹, MyeongAh Cho¹
¹Department of Software Convergence, KyungHee University
*Equal Contribution

Project Page: https://visualsciencelab-khu.github.io/OCRL-3DSSG/

Arxiv Link: https://arxiv.org/pdf/2510.04714

Introductions

- 3D (Semantic) Scene Graph(3DSG) prediction aims to build the graph representation on given 3D scene (point cloud, mesh, etc...)
- Scene graph estimates the semantic labels of vertices(objects) and their edge(relationship).

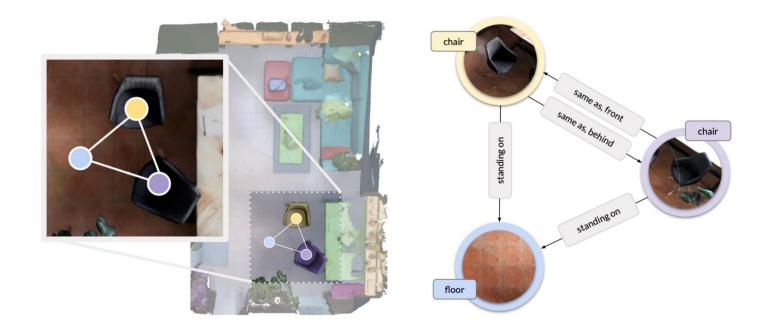
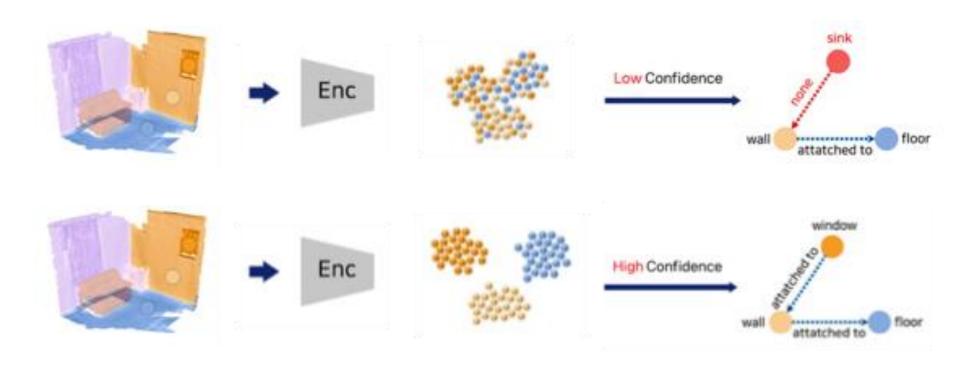


Fig. Overview of 3D semantic scene graph prediction task

Motivations & Observations

- As empirical observations, our study demonstrated that core bottleneck of 3D scene graph prediction is 'object representation'.
- The more accurate and discriminate object features are, the better performance of 3D scene graph come.



Motivations & Observations

- Through our empirical studies, we hypothesize that performance of 3D scene graph will rely –
 explicitly or implicitly on accuracy of classification and confidence of estimation.
- As our hypothesis, we can probabilistically formulate the prediction model like:

$$P(e_{ij}|z_i,z_j) = \sum_{o'_i,o'_j \in \mathcal{O}} P(e_{ij}|o'_i,o'_j)P(o'_i|z_i)P(o'_j|z_j)$$

Model	Obj. / Sub. /	Obj. //X Sub. X/	Obj. X Sub. X		
SGPN [45]	8%	12%	18%		
SGFN [52]	8%	12%	20%		
VL-SAT [48]	8%	13%	19%		

Tab.1. Misclassification rate of predicate respect to the object misclassification

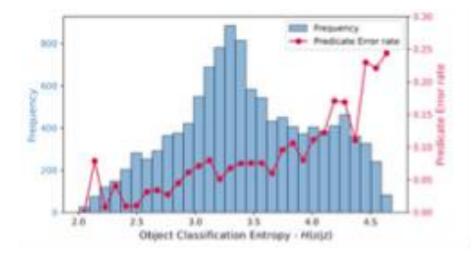


Fig. Misclassification rate of predicate respect to the object classification confidence

Methods

- We configured our proposed method as two stage: (1) Discriminative object feature pretraining, (2) training GNN model leveraging discriminative object representation.
- As Fig.2, we used CLIP text/image features to divide object features with supervised contrastive learning.

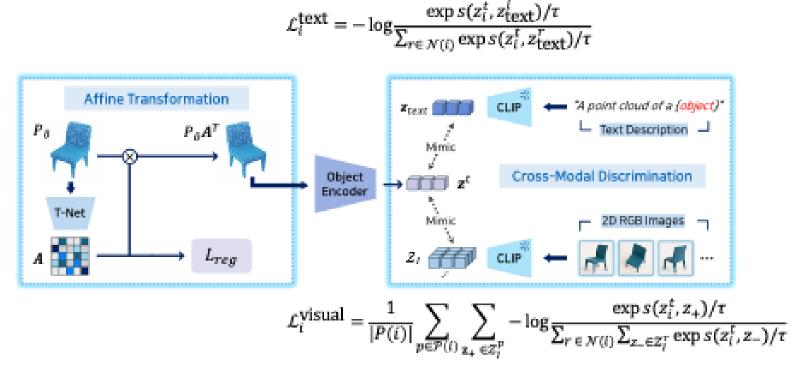


Fig. Architecture of proposed object feature encoder pre-trainer

Methods

- Given well-defined feature space, we focused on geometric information which cannot be contained solely in object feature.
- We propose Local/Global Spatial Enhancement and Bidirectional Edge Gating modules to aid scene graph prediction.

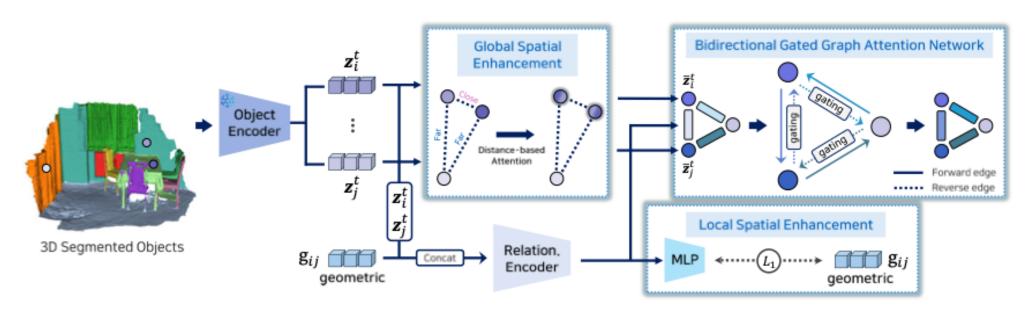


Fig. Architecture of proposed 3D scene graph prediction model

Experiments

- Our model outperformed previous 3DSG model baselines.
- Performance of object as well as predicate largely enhanced as our hypothesis

Model	Ob	ject	Pred	icate	Triplet		
	R@1	R@5	R@1	R@3	R@50	R@100	
SGPN [45]	49.46	73.99	86.92	94.76	85.38	88.59	
SGFN [52]	53.36	76.88	89.00	97.71	88.59	91.14	
VL-SAT [48]	55.93	78.06	89.81	98.46	89.35	92.20	
Ours	59.53	81.20	91.27	98.48	91.40	93.80	

Model	SGCls (w/GC)			PredCls (w/ GC)			SGCls (w/o GC)			PredCls (w/o GC)		
1120001	R@20	R@50	R@100	R@20	R@50	R@100	R@20	R@50	R@100	R@20	R@50	R@100
SGPN [45]	27.0	28.8	29.0	51.9	58.0	58.5	28.2	32.6	35.3	54.5	70.1	82.4
Zhang et al. [63]	28.5	30.0	30.1	59.3	65.0	65.3	29.8	34.3	37.0	62.2	78.4	88.3
SGFN [52]	29.5	31.2	31.2	65.9	78.8	79.6	31.9	39.3	45.0	68.9	82.8	91.2
VL-SAT [48]	32.0	33.5	33.7	67.8	79.9	80.8	33.8	41.3	47.0	70.5	85.0	92.5
Ours	36.1	37.7	37.8	70.2	82.0	82.6	38.1	46.1	52.5	73.3	87.8	94.6

Tab.2&3. Overall performance of 3D scene graph prediction

Experiments

- To solid our claim, we adopted our object feature encoder into other baselines.
- As shown in Tab.4, the PredCls performance showed huge performance gain, which empirically supports our hypothesis.

Model	OFL		Object		Predicate		Triplet		SGCls		PredCls	
1,10001	(ours)	R@1	R@5	R@1	R@3	R@50	R@100	R@20	R@50	R@20	R@50	
SGPN [45]	×	47.37 54.49 +7.12%	72.00 75.02 +3.02%	88.60 90.10 +1.50%	97.15 98.06 + 0.91 %	85.83 88.83 +3.00%	89.06 91.16 +2.10%	22.9 29.8 + 6.9 %	24.0 31.0 +7.0%	63.9 68.2 +4.3%	75.3 79.0 +3.7%	
SGFN [52]	×	56.18 58.75 +2.57%	78.04 79.70 + 1.66 %	89.61 89.63 +0.02%	98.01 98.24 +0.23%	89.50 89.99 +0.49%	92.05 92.41 +0.36%	31.5 35.0 +3.5%	33.0 36.3 +3.3%	67.7 70.7 +3.0%	79.2 80.9 +1.7%	
VL-SAT [48]	X	55.68 59.30 +3.62%	78.06 80.67 + 2.61 %	89.81 90.48 +0.67%	98.45 98.51 +0.06%	89.43 90.40 +0.97%	92.22 93.03 +0.81%	32.0 34.9 +2.9%	33.5 36.6 +3.1%	67.8 70.6 +2.8%	80.0 81.7 +1.7%	

Tab.4. Ablation studies of object feature encoder

Experiments

- Also, we proved that each of geometric modules plays important roles, which shows certain performance gain on Top-K mean Recall.
- We can infer that accurate predicate estimation requires discriminative object and proper information.
- Since predicate label in 3DSSG dataset is mostly spatial-relevant, we can achieved great performance with only two factors.

GSE BEG I		LSE	Ol	oject	Pre	dicate	Tr	iplet	SC	GCls	Pre	edCls
ODL	220	252	R@1	mR@1	R@1	mR@1	R@50	mR@50	R@50	mR@50	R@50	mR@50
			58.02	20.77	90.55	50.36	90.19	61.79	43.8	36.5	85.7	68.3
\checkmark			59.28	21.10	90.69	50.80	91.51	62.59	46.0	39.9	87.0	68.5
\checkmark	\checkmark		59.49	22.17	90.65	53.81	91.18	64.83	45.7	43.0	86.7	73.2
✓	✓	\checkmark	59.53	22.56	91.27	56.32	91.40	65.31	46.1	44.5	87.7	74.7

Tab.5. Ablation studies of spatial modules

Summary

- Re-examined the importance of object representation in 3DSG prediction and its condition discriminative feature space.
- Proposed simple yet efficient methodologies to improve performance of 3DSG, which overwhelms previous studies.
 - Object Feature Learning for discriminative object feature space using Supervised Contrastive Learning
 - Local Spatial Enhancement, novel auxiliary task to capture local geometric information
 - Global Spatial Enhancement to integrate contextual information among object instances
 - Bidirectional Edge Gating to regulate directional information between objects.
- Provided thorough theoretical and empirical analysis to describe detailed conditions of our findings.

