

S'MoRE: Structural Mixture of Residual Experts for Parameter-Efficient LLM Fine-Tuning

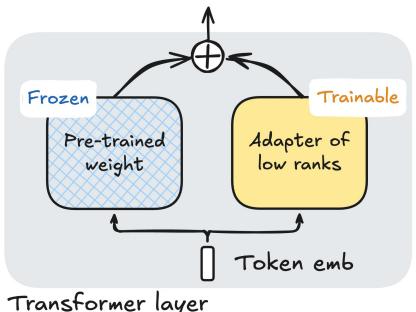
NeurlPS 2025

https://github.com/ZimpleX/SMoRE-LLM

Problem Setup

Parameter-efficient fine-tuning (PEFT) on pre-trained LLM

- Adapt to downstream tasks
- Freeze pre-trained weight; Update low-rank adapter parameters



Transformer layer

Evolution of PEFT Adapters

S'MoRE

- Integrating & extending designs of both LoRA & MoE
- Exploiting structural relationship among residual experts
- Boosting MoE's model capacity while maintaining LoRA's parameter efficiency

		Technique	Benefit			
	Low-rank approximation	Conditional computation	Structural mixture	Parameter efficiency	Model capacity	
LoRA	✓			+		
MoE		~			+	
Mixture of LoRA	✓	✓		+	+	
S'MoRE	✓	✓	✓	+	++	

Evolution of PEFT Adapters

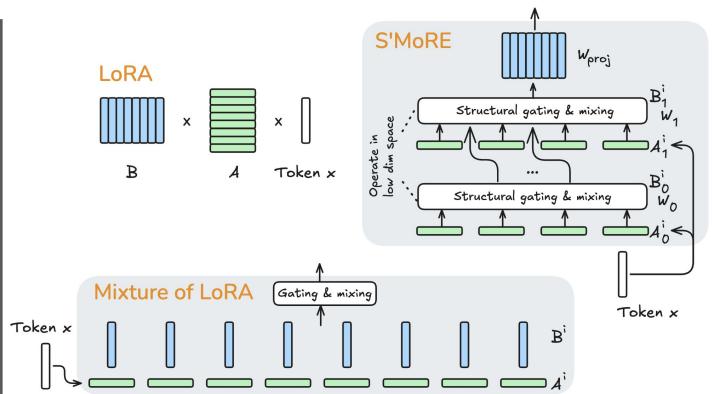
Similar efficiency:

Same parameters

Higher capacity:

LoRA < Mixture of LoRA < S'MoRE

(measure via structural flexibility)

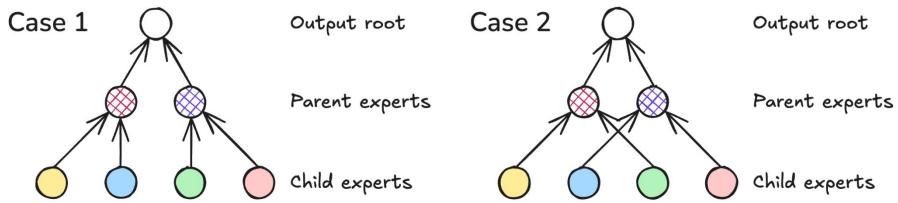


How Does Structure Help?

MoE routing problem

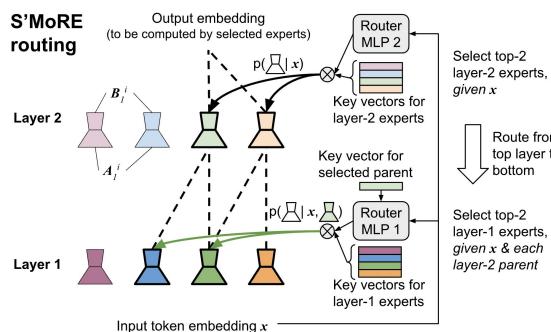
- What experts to activate? ⇒ Existing works
- How to connect activated experts? ⇒ S'MoRE & structural scaling

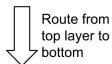
The **same** set of experts can form **exponentially many** different structures!



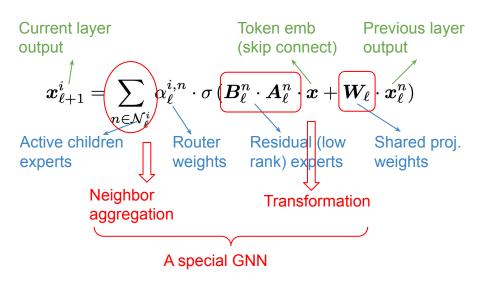
S'MoRE Routing

- Hierarchical routing (top-down)
- Router computes conditional probability by
 - active ancestors
 - input token
- "Token-expert" similarity based on key-query dot product
- Query embedding: by Router's compact MLP
- Key embedding: learnable for each residual expert

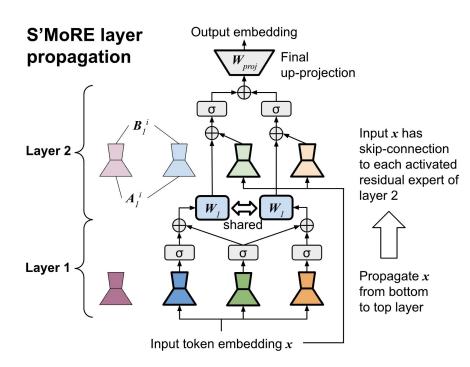




S'MoRE Layer Propagation



- Selected experts form a residual tree
- Token emb propagates from leaves to root
- Each layer: aggregation + transformation ⇒ GNN
- Craft each layer's output dim for efficiency
- σ & W theoretically ensures expressive power



Summary of Theoretical Properties

Parameter & computation efficiency

Similar to vanilla LoRA

Table 1: Overhead Δ compared with the main computation cost $2 \cdot d \cdot d_L$

r_ℓ	L	d_L	$2 \cdot d \cdot d_L$	Δ	Overhead ratio
	2	64	0.5M	0.005M	1.0%
8	3	96	0.8M	0.014M	1.8%
	4	128	1.0M	0.031M	2.9%
	2	128	1.0M	0.020M	2.0%
16	3	192	1.6M	0.057M	3.6%
	4	256	2.1M	0.123M	5.9%

Recovering 1-layer MoE

Proposition 3.1. S'MoRE can express MoLRE, when L = 1 and $\sigma(\cdot)$ is the identity mapping.

Proposition 3.2. S'MoRE can express MoMOR, when setting $\sigma(\cdot)$ as the identity mapping.

Expressive power w.r.t. "structural flexibility" $\Gamma \Rightarrow$ Graph isomorphism test

Given token, Γ = num distinct outputs that different expert structures can generate
 (1-layer MoE)

Theorem 3.3. The structural flexibility of MoMOR is upper-bounded by $\Gamma_{MoMOR} = \max_{\boldsymbol{x},\Theta} \operatorname{dist}(\boldsymbol{x};\Theta) \leq \binom{s_{L-1}}{f_{L-1}} \cdot \prod_{\ell=0}^{L-2} \left(\sum_{i=f_{\ell}}^{\min\{F_{\ell}\}s_{\ell}\}} \binom{s_{\ell}}{i}\right)$.

Theorem 3.4. Setting $\sigma(\cdot)$ as an MLP, there exists some Θ' such that the structural flexibility of

S'MoRE is: $\Gamma_{S'MoRE} = \min_{\boldsymbol{x}} dist(\boldsymbol{x}; \Theta') = \prod_{\ell=0}^{L-1} \binom{s_{\ell}}{f_{\ell}} \stackrel{F_{\ell+1}}{\longrightarrow}$, where we define $F_L := 1$. exponent over fanout

Experiments

Setup

- 7 benchmarks
- 2 model families & 3 model scales
- 3 gating types
- 4 or 8 total number of experts

Main observations

- Accuracy boost due to structural mixture
- Comparable parameter size due to **residual** aggregation in low-dim space

	Gate	Method	AF Acc.	RC-c Param.	AF Acc.	RC-e Param.	Acc.	SQA Param.		BQA Param.		grande Param.	Avg Acc.	Avg Param.
		Base LoRA	32.54 36.27	0 0.004	66.31 74.78	0 0.002	23.67 63.80	0 0.063	43.80 71.20	0 0.031	50.75 50.59	0.008	43.41 59.15	0 0.022
118	Dense	HydraLoRA (4) HydraLoRA (8) MixLoRA (4) MixLoRA (8) S'MoRE (2-2) S'MoRE (4-4)	35.93 35.93 39.66 39.32 40.00 39.66	0.006 0.012 0.021 0.021 0.017 0.017	73.54 72.31 72.84 74.78 75.31 74.43	0.023 0.007 0.134 0.270 0.085 0.085	66.34 62.08 65.44 66.42 66.99 67.32	0.002 0.042 0.134 0.069 0.037 0.045	71.60 71.60 70.40 69.60 72.20 72.80	0.023 0.012 0.134 0.134 0.085 0.202	50.75 50.99 51.30 51.14 52.01 52.01	0.012 0.012 0.007 0.037 0.015 0.168	59.63 58.58 59.93 60.25 61.30 61.24	0.013 0.017 0.086 0.106 0.048 0.103
LLaMA 3.2	Noisy top- k	MixLoRA (4) MixLoRA (8) S'MoRE (2-2) S'MoRE (4-4)	39.32 37.97 39.66 39.66	0.037 0.069 0.029 0.037	71.96 72.84 73.19 74.96	0.069 0.270 0.135 0.135	64.70 65.03 64.95 66.26	0.134 0.134 0.135 0.102	70.00 70.80 70.00 71.40	0.134 0.270 0.102 0.135	51.46 51.46 51.54 52.17	0.069 0.069 0.029 0.273	59.49 59.62 59.87 60.89	0.089 0.162 0.086 0.136
	Switch	MixLoRA (4) MixLoRA (8) S'MoRE (2-2) S'MoRE (4-4)	38.98 39.32 39.66 40.34	0.021 0.021 0.029 0.021	73.37 73.72 74.78 74.78	0.134 0.069 0.135 0.168	66.42 65.85 66.75 67.16	0.069 0.134 0.069 0.202	72.00 71.80 71.40 72.40	0.134 0.134 0.102 0.085	51.22 51.30 52.25 52.09	0.009 0.021 0.045 0.021	60.40 60.40 60.97 61.35	0.073 0.076 0.076 0.099
		Base LoRA	80.34 81.69	0 0.028	89.77 91.36	0 0.028	70.35 81.00	0 0.028	73.80 87.00	0 0.028	59.91 81.77	0 0.028	74.83 84.56	0 0.028
8B	Dense	HydraLoRA (4) HydraLoRA (8) MixLoRA (4) MixLoRA (8) S'MoRE (2-2) S'MoRE (4-4)	83.39 81.69 81.69 82.37 82.37 82.71	0.013 0.079 0.026 0.132 0.090 0.190	91.53 91.53 92.24 91.71 92.24 91.89	0.160 0.015 0.247 0.247 0.190 0.247	81.82 81.49 81.24 81.00 81.90	0.013 0.024 0.033 0.033 0.037 0.033	88.20 86.60 89.40 88.60 89.40 90.00	0.082 0.015 0.478 0.075 0.054 0.076	83.82 84.14 84.06 85.40 88.24 85.48	0.160 0.297 0.247 0.478 0.480 0.247	85.75 85.09 85.73 85.82 86.83 86.40	0.086 0.086 0.206 0.193 0.170 0.157
LLaMA 3 8	Noisy top- k	MixLoRA (4) MixLoRA (8) S'MoRE (2-2) S'MoRE (4-4)	82.37 83.39 82.37 82.37	0.075 0.950 0.305 0.104	91.53 91.53 91.36 91.71	0.247 0.247 0.090 0.305	80.75 80.67 81.82 82.06	0.075 0.075 0.104 0.047	87.80 88.40 88.20 90.00	0.075 0.247 0.047 0.480	82.00 83.19 83.27 85.48	0.478 0.478 0.190 0.714	84.89 85.44 85.40 86.32	0.190 0.399 0.147 0.330
	Switch	MixLoRA (4) MixLoRA (8) S'MoRE (2-2) S'MoRE (4-4)	82.37 82.03 83.05 83.39	0.132 0.033 0.133 0.076	92.95 91.71 92.24 92.42	0.478 0.132 0.061 0.305	81.08 81.24 81.82 82.15	0.047 0.047 0.029 0.047	88.80 88.60 89.80 89.80	0.478 0.247 0.076 0.305	84.53 85.95 86.42 85.87	0.247 0.950 0.247 0.305	85.95 85.91 86.67 86.73	0.276 0.282 0.109 0.208

Table 4: Results on Gemma 2-9B We evaluate on representative benchmarks due to limited resources.

87.06

88.79

89.19

90.13

90.13

Winogrande

0.145

0.169

0.315

0.169

0.315

Method Accuracy Param. (B) Accuracy Param. (B) Accuracy Param. (B) Pass@1 Param. (B) Acc. / Pass@1 Param. (B)

HumanEval

0.072

0.096

0.168

0.096

0.060

43.29

43.29

44.51

44.51

46.34

Experiments

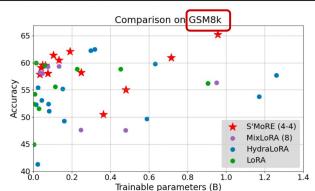
MixLoRA (8)
S'MoRE (2-2)
S'MoRE (4-4)
Curacy /

LoRA

MixLoRA (4)

Table 3: LLaMA 3-8B: model Accuracy / Pass@1, and the best-performing models' trainable parameters (B).

Gate	Method	GS	M8K	HumanEval			
	Wethod	Accuracy	Param. (B)	Pass@1	Param. (B)		
	Base model	55.95	0	26.22	0		
	LoRA	59.97	0.014	43.29	0.014		
	HydraLoRA (4)	62.47	0.317	40.85	0.082		
•	HydraLoRA (8)	62.24	0.297	44.51	0.079		
Dense	MixLoRA (4)	61.11	0.132	39.02	0.026		
G	MixLoRA (8)	59.36	0.132	40.85	0.033		
,	S'MORE (2-2)	62.40	0.104	42.07	0.090		
	S'MoRE (4-4)	65.20	0.957	43.90	0.104		
	MixLoRA (4)	59.67	0.047	42.68	0.075		
Switch	MixLoRA (8)	61.56	0.247	39.63	0.247		
	S'MoRE (2-2)	62.47	0.133	45.73	0.190		
	S'MoRE (4-4)	63.91	0.957	42.07	0.090		



CSQA

0.145

0.096

0.096

0.169

0.060

85.91

85.83

85.83

86.40

86.32

ARC-e

0.289

0.059

0.168

0.042

0.169

79.72

85.54

83.07

86.24

86.60

Figure 4: Change of accuracy w.r.t. trainable parameters, corresponding to models in Table 3

Consistent (or larger)
 gains across model
 families

Avg

74.00

75.86

75.65

76.82

77.35

Avg

0.163

0.105

0.187

0.119

0.151

 Structure improves scaling on math & coding

Table 5: S'MoRE on LLaMA 3.2-1B with more layers. We follow a simple hyperparameter tuning strategy, ensuring the same design space sizes and parameter budgets for the 2- and 3-layer variants.

Increasing layers may further improve accuracy – with even **fewer** parameters

Layer sizes	ARC-c		ARC-e		Commonsense QA		OpenBook QA		Winogrande	
Layer sizes	Accuracy	Param. (B)	Accuracy	Param. (B)	Accuracy	Param. (B)	Accuracy	Param. (B)	Accuracy	Param. (B)
2-2 2-2-2	40.00 39.32	0.017 0.017	75.31 74.25	0.085 0.102	66.99 67.40	0.037 0.053	72.20 72.60	0.085 0.205	52.01 52.88	0.011 0.011
4-4 4-4-4	39.66 40.34	0.017 0.029	74.43 73.90	0.085 0.205	67.32 67.32	0.045 0.053	72.80 73.60	0.202 0.202	52.01 52.09	0.168 0.013

Future Directions

Model scaling w.r.t. **STRUCTURE!**