Towards Robust Uncertainty Calibration for Composed Image Retrieval

Yifan Wang¹, Wuliang Huang², Yufan Wen¹, Shunning Liu¹, Chun Yuan^{1,*}

1 Tsinghua University, 2 Institute of Computing Technology, CAS

Motivation

- Background: Composed image retrieval distinguishes positive from negative samples by comprehensively understanding semantics in bimodal queries.
- **Challenges**: Unreliable retrieval results due to *aleatoric uncertainty* and *epistemic uncertainty*.
- ◆ Aleatoric uncertainty roots in implicit semantic overlap in candidate images.
- ◆ Epistemic uncertainty originates from semantic concept imbalance & over-concentration on salient features.

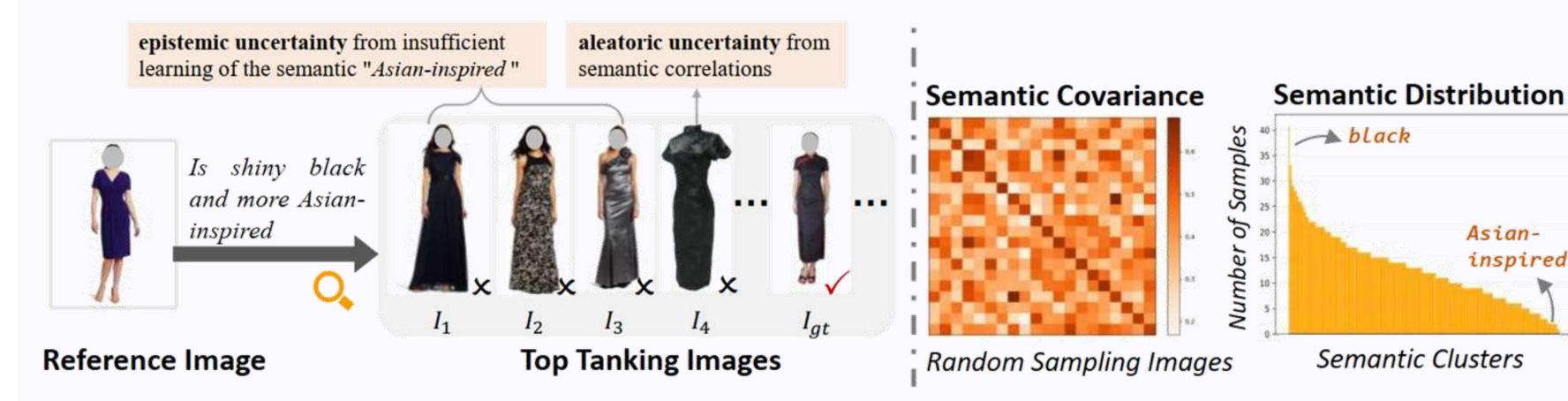


Figure 1: Illustration of uncertain matching results. (*left*) Unreliable top-ranking results disrupted by insufficient learning of "*Asign-inspired*" and partial semantic correlations. (*right*) Strong correlations within the semantic matrix and imbalanced semantic distributions underlying visual candidates.

Experiment

Methods	Recall@K				$R_{\text{subset}}@K$			1 (DOT D 01)
	K=1	K=5	K=10	K=50	K=1	K=2	K=3	$Avg(R@5, R_{subset}@1)$
TIRG [1]	11.04	35.08	51.27	83.29	23.82	45.65	64.55	29.45
CIRPLANT [43]	19.55	52.55	68.39	92.38	39.20	63.03	79.49	45.88
ARTEMIS [23]	16.96	46.10	61.31	87.73	39.99	62.20	75.67	43.05
CLIP4Cir [42]	33.59	65.35	77.35	95.21	62.39	81.81	92.02	63.87
CompoDiff [49]	22.35	54.36	73.41	91.77	35.84	56.11	76.60	45.10
BLIP4CIR [20]	40.17	71.81	83.18	95.69	72.34	88.70	95.23	72.07
SSN [50]	43.91	77.25	86.48	97.45	71.76	88.63	95.54	74.51
SPN [32]	45.33	78.07	87.61	98.17	73.93	89.28	95.61	76.00
CaLa [21]	49.11	81.21	89.59	98.00	76.27	91.04	96.46	78.74
SPRC [29]	51.96	82.12	89.74	97.69	80.65	92.31	96.60	81.39
ENCODER [19]	46.10	77.98	87.16	94.64	76.92	90.41	95.95	77.45
RUNC (Ours)	53.81	83.47	91.11	98.22	80.87	92.36	96.94	82.17

66 65 64 62 61 60 60 59 0 5 10 15

Analysis of Evidential Learning

Methodology

Employ evidential priors through high-order Normal Inverse Gamma
 (NIG) distributions to fit the semantic covariance matrix:

$$\mathcal{L}_{i}^{NLL} = -\log(p(\boldsymbol{c}_{ij}|\gamma_{i}, \nu_{i}, \alpha_{i}, \beta_{i}))$$

$$= \frac{1}{2}\log(\frac{\pi}{\nu_{i}}) - \alpha_{i}\log\Omega_{i} + (\alpha_{i} + \frac{1}{2})\log((\boldsymbol{c}_{ij} - \mu_{i})^{2}\nu_{i} + \Omega_{i}) + \log(\frac{\Gamma(\alpha_{i})}{\Gamma(\alpha_{i} + \frac{1}{2})})$$

- Infer sample-level uncertainty to penalize uncertainty sample in contrastive learning $u_i = \mathbb{E}[\delta_i^2] + \text{Var}[\mu_i] = \frac{\beta_i}{\alpha_i 1} + \frac{\beta_i}{\nu_i(\alpha_i 1)} = \frac{\beta_i(\nu_i + 1)}{\nu_i(\alpha_i 1)}$
- Construct virtual guidance p^* to differentiate the retention & modification characteristics: $\mathcal{L}_{ort} = \sum_{i \neq j} (\text{Cov}(p^*, m)_{ij})^2 = \sum_{i \neq j} (\frac{1}{B} ((p^*)^\top m)_{ij})^2$

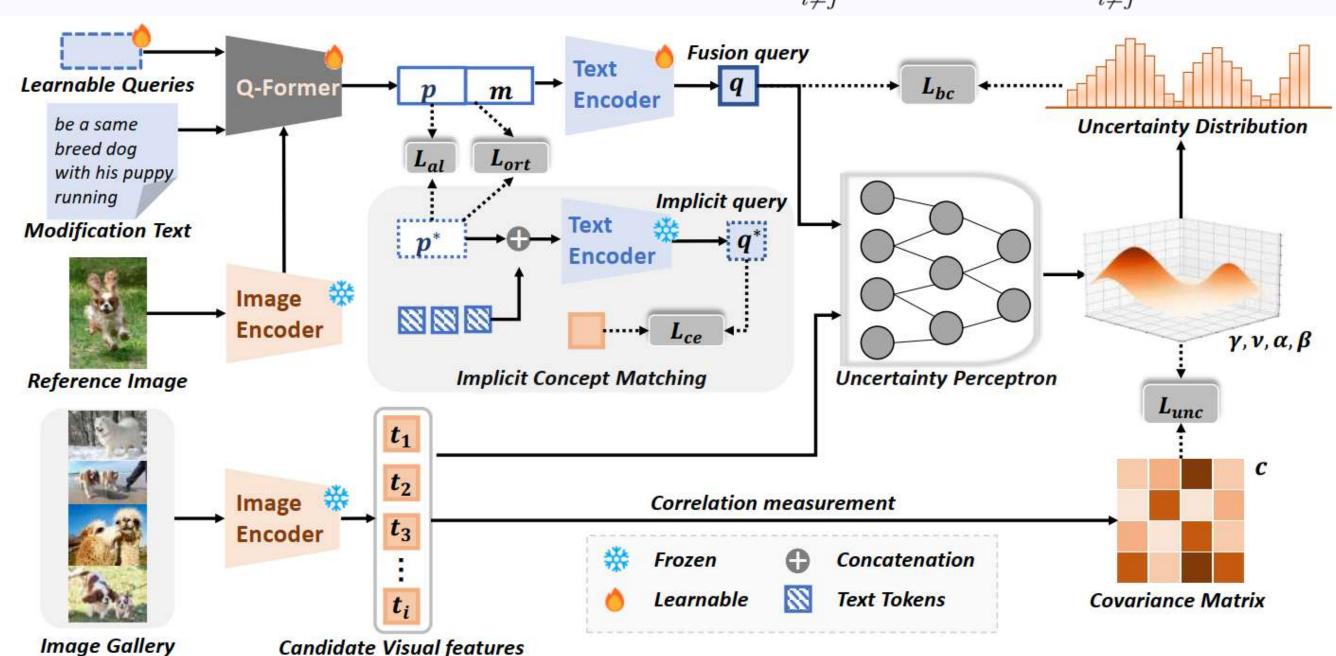
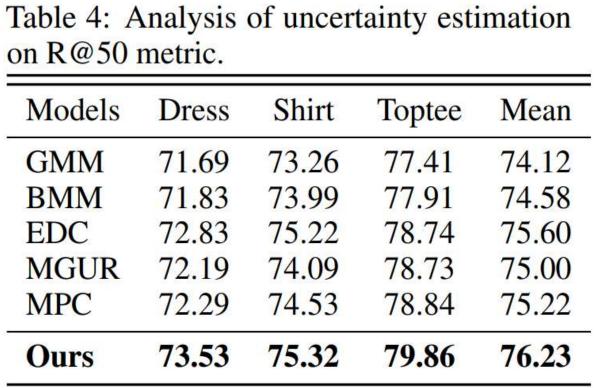


Figure 2: The Framework of RUNC. Uncertainty perceptron introduces evidential priors to fit the semantic covariance and yield uncertainty distribution to calibrate the supervision on the fusion query. Implicit guidances p^* are incorporated to distill effective features for retention and modification.

Further Analysis



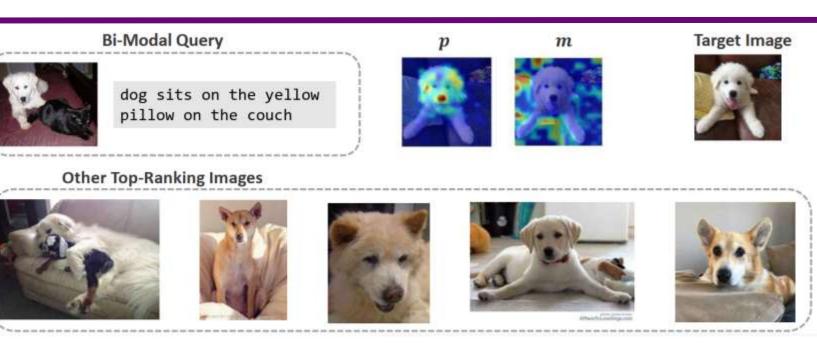


Figure 5: Heatmaps on Target Images with Other Top ranking results.