NeurlPS 2025

# Don't Let It Fade: Preserving Edits in Diffusion Language Models via Token Timestep Allocation

Woojin Kim, Jaeyoung Do<sup>†</sup>

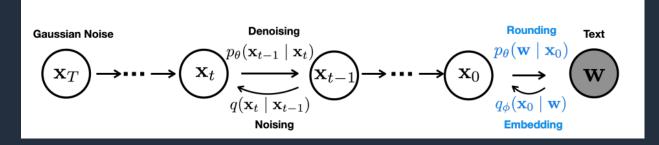
AIDAS LAB ECE, Seoul National University {wjk9904, jaeyoung.do}@snu.ac.kr



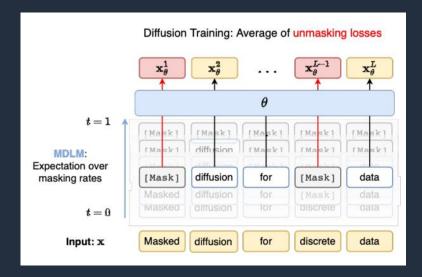
## **Diffusion Language Models**

A **Diffusion Language Model** is a language model that generates text by iteratively denoising noise into coherent sequences, analogous to how diffusion models generate images from noise.

Diffusion-LM (Li et al., 2022)



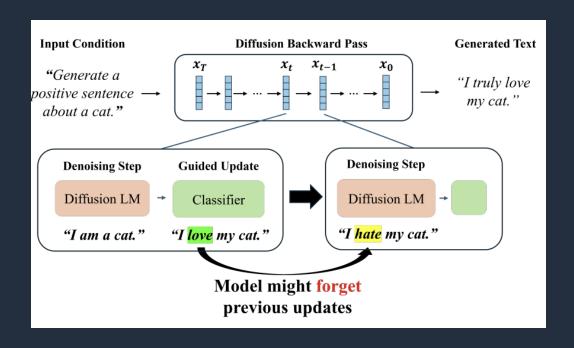
MDLM (Sahoo et al., 2024)





## **Controllability Challenge in DLMs**

With their iterative denoising and bidirectional context, diffusion language models (DLMs) enable fine-grained and flexible control over text generation.



However, major limitations remain:

- (1) Low fluency weak token dependency
- (2) High computational cost hundreds of steps

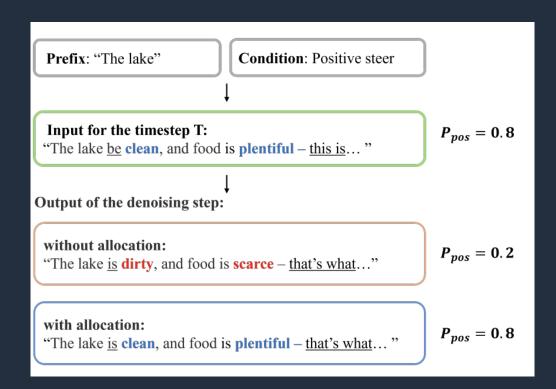
We argue that these issues stem from uniform, context-agnostic updates.

#### **Our Contribution**

**Goal:** Achieve **stable and controllable text generation** by preserving guided edits across timesteps.

#### **Our Contributions:**

- 1. Identify **update-forgetting** as the key bottleneck in controllable diffusion text generation.
- 2. Propose **TTA-Diffusion** an inference-time method that allocates timesteps per token for stable control.
- 3. Demonstrate improved controllability, fluency, and efficiency across tasks and domains.





#### **Diffusion Fluctuation**

- Each diffusion step introduces small perturbations to tokens.
- When fluctuations grow large, sentences lose coherence and fluency.
- Strong correlation observed: higher fluctuation → higher perplexity.
  - -> Indicates instability in token transitions harms generation quality.

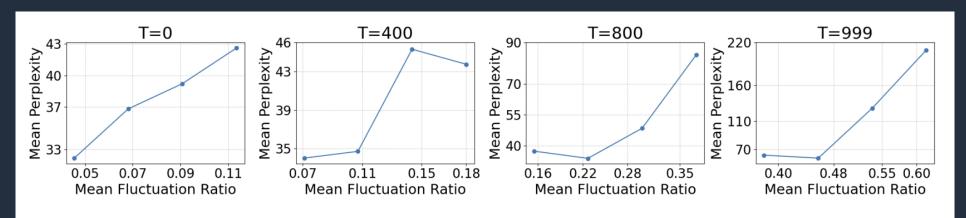


Figure 2: Fluctuation vs. perplexity across timesteps. At each timestep t, samples are grouped by fluctuation ratio, showing that higher fluctuation is consistently associated with higher perplexity.



## **Update Forgetting**

- Guided edits made at one step often **fade in later steps**.
- Classifier confidence drops when key tokens are overwritten.



This causes semantic drift and loss of control accuracy.



Need for **preserving guided token updates** across timesteps

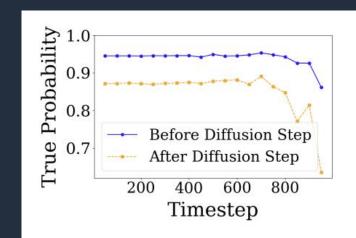


Figure 3: Classifier confidence drop due to update-forgetting.



## **Token Timestep Allocation (TTA-Diffusion)**

- We propose a soft ordering based on timesteps, applied only during inference time.
- Each token has its own refinement rate, allowing flexible and continuous updates.

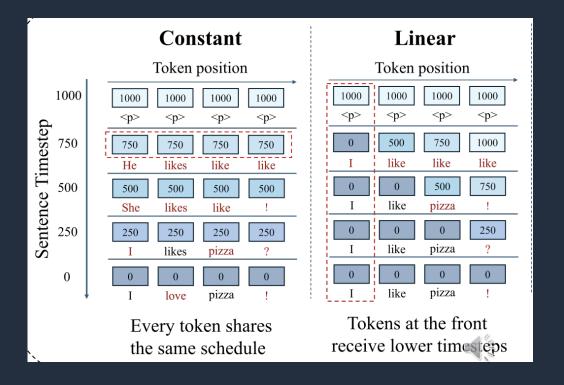
#### **Core Idea:**

Assign a per-token timestep:

$$t_i = f(i, t)$$

Large  $t_i$  -> higher noise -> stronger denoising Small  $t_i$  -> lower noise -> weak denoising

This enables token-wise control in inference time



## **Semantic-based Adaptive Allocation**

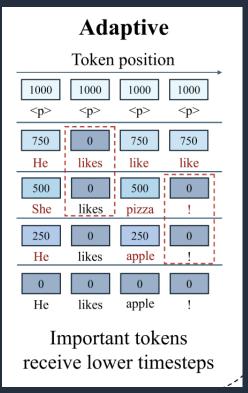
- Fixed schedules might ignore semantic importance
- Some tokens (e.g., sentiment words) should stay stable, others can change

#### Core Idea:

- Use classifier gradients to measure token importance.
- High gradient -> token has already been refined much -> assign smaller timestep

$$\hat{g}_i = \frac{g_i - \min_j g_j}{\max_j g_j - \min_j g_j}, \quad i = 1, \dots, N.$$

$$t_i^{\text{adaptive}} = \alpha_{\text{smooth}} t + (1 - \alpha_{\text{smooth}})(1 - \hat{g}_i)t$$





#### **Results: Controllable Text Generation**

We evaluate on detoxification and sentiment control, showing that TTA-Diffusion improves both control accuracy and fluency (lower perplexity).

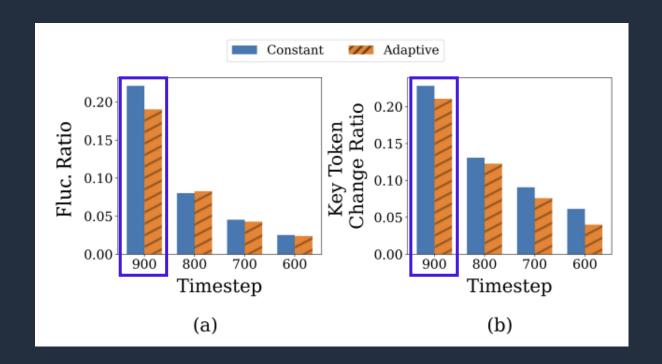
| Model                          | Toxicity              |                     |                 |         | Sentiment Control |                  |         |
|--------------------------------|-----------------------|---------------------|-----------------|---------|-------------------|------------------|---------|
| Widuci                         | Avg. tox $\downarrow$ | Max. tox↓           | $PPL\downarrow$ | Dist-3↑ | Acc↑              | $PPL\downarrow$  | Dist-3↑ |
| <b>Auto-regressive Bas</b>     | elines                |                     |                 |         |                   |                  |         |
| PPLM                           | 30.6                  | 59.7                | 107.4           | 0.95    | 42.6              | 201.1            | 0.94    |
| GeDi                           | 22.0                  | 36.1                | 98.8            | 0.94    | 79.9              | 98.6             | 0.91    |
| DExperts                       | 15.1                  | 32.0                | 48.0            | 0.87    | 83.2              | 31.8             | 0.93    |
| Air-decoding                   | 18.5                  | 40.4                | 49.0            | 0.93    | 82.6              | 27.1             | 0.94    |
| LM-Steer                       | 19.1                  | 47.0                | 44.4            | 0.91    | 85.4              | 78.8             | 0.86    |
| <b>Diffusion Baselines</b>     |                       |                     |                 |         |                   |                  |         |
| Diffusion-LM <sub>T=2000</sub> | 21.8                  | _                   | 131.2           | 0.94    | 72.8              | 89.3             | 0.94    |
| $SSD-LM_{T=1000}$              | 24.6                  | 50.3                | 58.3            | 0.94    | 76.2              | 51.1             | 0.94    |
| $LD4LG_{T=250}$                | 14.5                  | -                   | 296.4           | 0.90    | 59.9              | 70.7             | 0.95    |
| $TESS_{T=1000}$                | 14.6                  | 32.3                | 58.8            | 0.92    | 71.1              | 31.7             | 0.85    |
| Ours                           |                       |                     |                 |         |                   |                  |         |
| TTA (50) <sub>T=200</sub>      | 12.2                  | 26.0                | 40.6            | 0.92    | 94.7              | 20.5             | 0.86    |
| $TTA (50) _{T=100}$            | $\overline{12.2}$     | $\frac{-6.7}{26.7}$ | 46.3            | 0.93    | 92.7              | $\frac{1}{28.7}$ | 0.86    |
| TTA (50) $_{T=50}$             | 12.5                  | 27.3                | 59.5            | 0.94    | 88.7              | 47.3             | 0.87    |
|                                |                       |                     |                 |         |                   |                  |         |



## Results: Effect of TTA & Transferability

| (a) Detoxification and sentiment control. |     |                           |                  |                           |             |  |
|-------------------------------------------|-----|---------------------------|------------------|---------------------------|-------------|--|
| Model                                     | T   | <b>Detoxi</b> f<br>Tox. ↓ | fication<br>PPL↓ | Sentiment<br>Acc. ↑ PPL ↓ |             |  |
| TTA (5000)                                | 200 | 13.2                      | 630.4            | 80.8                      | 47.3        |  |
| + with schedule                           |     | <b>12.8</b>               | <b>70.8</b>      | <b>82.1</b>               | <b>35.5</b> |  |
| TTA (50)                                  | 50  | 14.0                      | 68.0             | 83.5                      | 44.0        |  |
| + with schedule                           |     | <b>12.5</b>               | <b>59.5</b>      | <b>85.9</b>               | <b>40.2</b> |  |

| $\gamma$ | Method     | Valid (%)  | Mean Property |
|----------|------------|------------|---------------|
| 1        | D-CBG      | 989        | 0.474         |
|          | + Adaptive | 998        | 0.494         |
| 10       | D-CBG      | 721        | 0.585         |
|          | + Adaptive | <b>756</b> | 0.591         |



For more detailed and interesting results, please check out our paper!



## Thank you!

Woojin Kim, Jaeyoung Do<sup>†</sup>

AIDAS LAB ECE, Seoul National University {wjk9904, jaeyoung.do}@snu.ac.kr

