Partial Correlation Network Estimation by Semismooth Newton Methods

Dongwon Kim*1 Sungdong Lee*2 Joong-Ho Won1

 $^{1}\mathrm{Department}$ of Statistics, Seoul National University $^{2}\mathrm{Department}$ of Medicine, National University of Singapore

Conference on Neural Information Processing Systems

Background: Partial Correlation Network

From Precision Matrix to a Network

Let $\Theta = \Sigma^{-1}$ be the inverse covariance (precision) matrix of a data distribution.

$$\Theta = \begin{bmatrix} 1 & 0.2 & 0 & 0 & 0 \\ 0.2 & 1 & 0.2 & 0 & 0.2 \\ 0 & 0.2 & 1 & 0.2 & 0 \\ 0 & 0 & 0.2 & 1 & 0.2 \\ 0 & 0.2 & 0 & 0.2 & 1 \end{bmatrix} \iff 0$$

- A sparse Θ induces a graph: $\theta_{ij} = 0 \Leftrightarrow$ no edge.
- The quantity $\rho_{ij} := -\theta_{ij}/\sqrt{\theta_{ii}\theta_{jj}}$ is the **partial correlation**: the degree of association with all the other variables controlled.
- Estimating a sparse precision matrix corresponds to estimating the partial correlation network of the data.

Background: ACCORD estimator

ACCORD estimator (Lee et al., 2025)

$$\hat{\boldsymbol{\Omega}} = \min_{\boldsymbol{\Omega} \in \mathbb{R}^{p \times p}} - \log \det \boldsymbol{\Omega}_D + \frac{1}{2} \mathrm{tr}(\boldsymbol{\Omega}^\top \boldsymbol{\Omega} \boldsymbol{S}) + \lambda \|\boldsymbol{\Omega}_{-D}\|_1,$$

where S is the sample covariance of data matrix $X \in \mathbb{R}^{n \times p}$; Ω_D/Ω_{-D} denote diagonal/off-diagonal parts.

Why ACCORD?

ullet Using $oldsymbol{X}$ from a data distribution with precision matrix $oldsymbol{\Theta}^*$, the ACCORD estimator can consistently estimate

$$\mathbf{\Omega}^* = \mathbf{\Theta}_D^{*-1/2} \mathbf{\Theta}^*,$$

which is a reparameterization of Θ^* preserving its sparsity pattern.

• Pseudolikelihood avoids $\mathbb{R}^{p \times p}$ matrix inversions required in Gaussian graphical models, enhancing scalability.

What We Do: From Row-Separable KKT to Fast Solvers

Key ideas

- ullet Row-wise separability: ACCORD splits into p independent row subproblems.
- Per-row KKT: nonsmooth due to soft-thresholding $T_{\lambda}(\cdot)$ from the ℓ_1 penalty (kinks at $\pm \lambda$), yet the map is *strongly semismooth*.
- Our method: cast each row's KKT as a root-finding problem and solve via (B-)semismooth Newton plus damping strategy.
- Efficiency: small linear system solves per row; naturally parallel, and GPU-friendly.

Impact

- Rapid convergence in few iterations; locally superlinear/quadratic with stable sparsity recovery.
- ullet Scales partial correlation network estimation to massive p on real multi-omics datasets.

Real data: TCGA LIHC ($p \approx 305k, n = 365$)

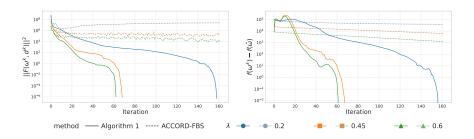


Figure: Convergence comparison on a large-scale multi-omics cancer dataset

- ullet Hardware: 6 imes RTX 6000 Ada GPUs; row-wise parallelization over $\Omega.$
- ullet Convergence: converges in a few dozen iterations across λ values.
- Efficiency: consistently faster wall-clock and much smaller KKT residuals than proximal-only baselines.

Conclusion

Summary

A scalable second-order solver for ℓ_1 -regularized pseudolikelihood-based partial correlation network estimation.

Results

Despite the nonsmooth nature of the problem, the proposed methods:

- Convergence: global descent via damping; locally superlinear/quadratic.
- Scalability: row-wise separability ⇒ parallel/GPU-friendly updates.
- Efficiency: far fewer iterations than proximal baselines; enables massive-scale analyses.

For details:

Poster (NeurIPS 2025): Thu, Dec 4, 3-6 p.m. AST, Exhibit Hall C,D,E;

