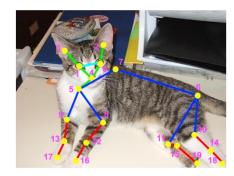
Pose Splatter: A 3D Gaussian Splatting Model for Quantifying Animal Pose and Appearance

Jack Goffinet*, Youngjo min*, Carlo Tomasi, David Carlson

Duke University

(* Equal Contribution)


Paper

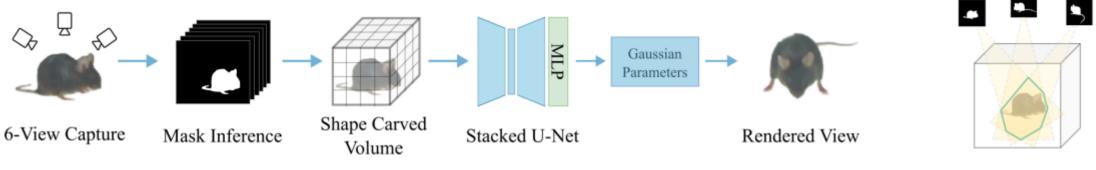
Code

Motivation

Why 3D Animal Pose Matters

- Understanding behavior is key to studying neural and genetic processes.
- 3D pose reveals walking, balance, and interactions
- Keypoint methods: need manual labels, too sparse for full shape or texture.
- Mesh methods: require per-frame optimization and species templates.
- ➤ For a large-scale analysis, we need a method that is annotation-free, template-free, and fast.

Keypoints [1]



Mesh [2]

Method

- Pose Splatter: A Feed-Forward 3D Gaussian Splatting Framework
- Goal: Model full 3D pose & appearance of animals without labels or templates.
- Pipeline:
 - 1 Multi-view images + SAM2 masks → shape-carved voxel volume.
 - 2 Stacked 3D U-Net → refines volume into feature map.
 - **3** MLP → Gaussian parameters (position, covariance, color, opacity).
 - Render via 3DGS with L_1 + IoU losses.

Pipeline

Shape Carving

Method

- Advantages:
 - 1 Feed-forward inference (no per-frame optimization).
 - 2 Annotation-free and template-free.
 - 3 Lightweight (≈ 2.5 GB VRAM, 30 ms per frame).

Method

- Rotation-Invariant Visual Embedding
- Goal: A compact, rotation-invariant descriptor of pose & appearance
- Pipeline:
 - 1 Rendering: 32 virtual views on a sphere around the animal
 - **2** Encoding: each 224×224 render → 512-D feature via ResNet-18.
 - 3 Spherical Harmonics:
 - Treat $f(\theta, \phi)$ (feature) as a function on the sphere.
 - Expand in basis Y_{lm} (L = 3) and keep $\|\hat{f}_{lm}\|^2 \rightarrow \text{rotation invariance}$.

4 Adversarial PCA:

- Further remove azimuth bias (light / view differences).
- Produce final 50-D pose embedding.

Datasets

- **Mouse:** 6 synchronized 30-min videos (1536×2048 @ 30 FPS) of a freelymoving mouse in a 28 cm arena (324,000 frames).
- Finch: 20-min 6-view recording of a freely moving zebra finch (216,000 frames).
- **Rat7M** [3]: 6 camera angles with partial occlusions (tail, feet) and uneven lighting.

Rat

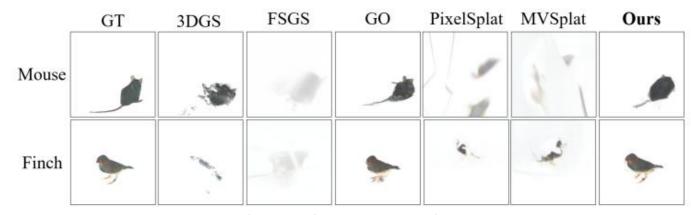
Mouse

Quantitative Results

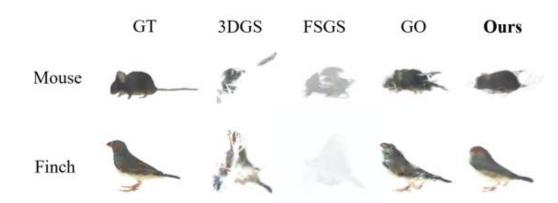
Method		Mouse				Finch			
		IoU↑	L1↓	PSNR↑	SSIM↑	IoU↑	L1↓	PSNR↑	SSIM↑
Per-Scene Optimization	3DGS FSGS GO	0.502 0.462 <u>0.732</u>	0.742 0.923 0.628	25.9 25.3 28.8	0.969 0.975 <u>0.977</u>	0.513 0.454 <u>0.819</u>	0.689 0.925 <u>0.382</u>	26.4 25.6 34.1	0.975 0.981 <u>0.990</u>
Feed-Forward	PixelSplat MVSplat Ours	0.424 0.417 0.760	0.921 0.887 <u>0.632</u>	25.2 25.5 29.0	0.968 0.966 0.982	0.428 0.461 0.848	0.858 0.893 0.345	26.2 25.9 34.5	0.971 0.970 0.992

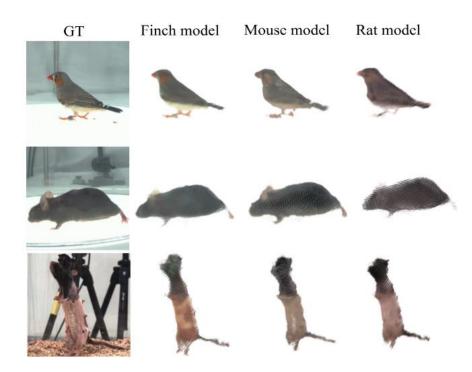
Comparison with sparse-view 3DGS [4-8]

Method		Mous	e (4 cam)		Finch (4 cam)				
	IoU↑	L1↓	PSNR↑	SSIM↑	IoU↑	L1↓	PSNR↑	SSIM↑	
3DGS	0.447	0.786	25.8	0.967	0.459	0.754	26.1	0.973	
FSGS	0.414	0.982	24.9	0.974	0.423	0.891	25.4	0.980	
GO	0.706	0.745	28.5	0.981	0.725	0.657	30.4	0.985	
Ours	0.721	<u>0.753</u>	<u>28.2</u>	0.982	0.731	<u>0.685</u>	<u>29.0</u>	0.981	

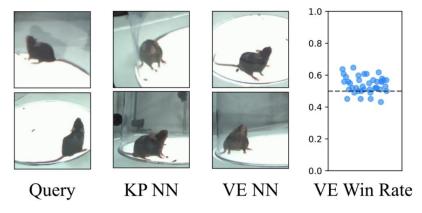

Comparison with per-scene optimization 3DGS [4-6]

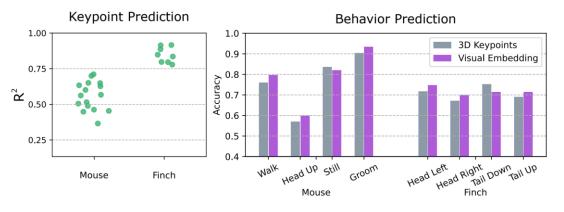
	IoU↑	L1↓	PSNR↑	SSIM↑
			25.1 24.0	
$\begin{array}{c} \textbf{Mouse} \rightarrow \textbf{Finch} \\ \textbf{Finch} \rightarrow \textbf{Mouse} \end{array}$				


5-camera cross-species generalization


Qualitative Results

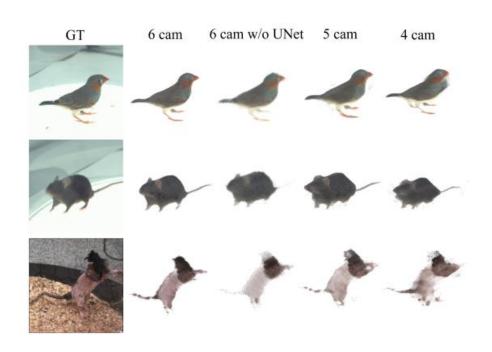
Comparison with sparse-view 3DGS [4-8]


Comparison with per-scene optimization 3DGS [4-6]


Cross-species renderings

Visual Embedding Results

Nearest-neighbor preference study (vs. 3D Keypoints)



Behavior Prediction (vs. 3D keypoints)

Ablation Study

Method	Mouse				Finch				Rat			
	IoU↑	L1↓	PSNR↑	SSIM↑	IoU↑	L1↓	PSNR↑	SSIM↑	IoU↑	L1↓	PSNR↑	SSIM↑
6 cam 6 cam		0.317 0.380	33.5 32.2	0.989 0.987	0.913 0.876	0.231 0.308		0.991 0.990		0.658 0.849		0.975 0.971
5 cam 5 cam		0.632 0.663		0.982 0.983		0.345 0.421		0.992 0.991	0.794 0.688		27.6 24.6	0.981 0.970
4 cam 4 cam	0.721 0.701	0.753 0.737	28.2 28.4	0.982 0.982		0.685 0.874		0.981 0.979	0.651 0.579		24.4 23.5	0.967 0.955

Discussion & Conclusion

Key Achievements

- 1 Full 3D pose & appearance: reconstruction without any manual annotation or species-specific templates.
- **2** Feed-forward model no per-frame optimization; fast (≈ 30 ms/frame).
- **3** Lightweight (\approx 2.5 GB VRAM) and scalable for large behavioral datasets.
- 4 Introduces rotation-invariant visual embedding that supports downstream behavior analysis.

Limitations

- **1** Requires ≥ 4 calibrated cameras for stable performance.
- 2 Struggles with multi-animal occlusions and crowded scenes.
- **3** Visual embedding interpretability can be improved.

References

- [1] Cao, J., Tang, H., Fang, H. S., Shen, X., Lu, C., & Tai, Y. W. (2019). Cross-domain adaptation for animal pose estimation. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 9498-9507).
- [2] Zuffi, S., Kanazawa, A., Jacobs, D. W., & Black, M. J. (2017). 3D menagerie: Modeling the 3D shape and pose of animals. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6365-6373).
- [3] Marshall, Jesse D.; Aldarondo, Diego; Wang, William; P. Ölveczky, Bence; Dunn, Timothy (2021). Rat 7M. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.5295370.v3
- [4] Kerbl, B., Kopanas, G., Leimkühler, T., & Drettakis, G. (2023). 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4), 139-1.
- [5] Zhu, Z., Fan, Z., Jiang, Y., & Wang, Z. (2024, September). Fsgs: Real-time few-shot view synthesis using gaussian splatting. In European conference on computer vision (pp. 145-163). Cham: Springer Nature Switzerland.
- [6] Yang, C., Li, S., Fang, J., Liang, R., Xie, L., Zhang, X., ... & Tian, Q. (2024). Gaussian object: High-quality 3d object reconstruction from four views with gaussian splatting. arXiv preprint arXiv:2402.10259.
- [7] Charatan, D., Li, S. L., Tagliasacchi, A., & Sitzmann, V. (2024). pixelsplat: 3d gaussian splats from image pairs for scalable generalizable 3d reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 19457-19467).
- [8] Chen, Y., Xu, H., Zheng, C., Zhuang, B., Pollefeys, M., Geiger, A., ... & Cai, J. (2024, September). Mvsplat: Efficient 3d gaussian splatting from sparse multiview images. In *European Conference on Computer Vision* (pp. 370-386). Cham: Springer Nature Switzerland.
- [9] Ravi, N., Gabeur, V., Hu, Y. T., Hu, R., Ryali, C., Ma, T., ... & Feichtenhofer, C. (2024). Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714.

QR Codes

Paper (arxiv)

Code (github)

