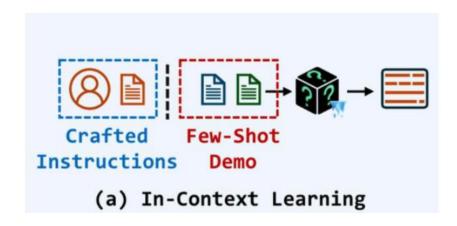


Matryoshka Pilot

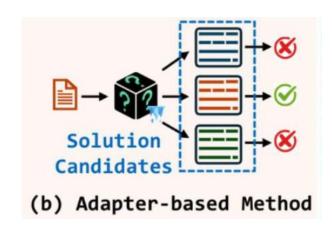
Learning to Drive Black-Box LLMs with LLMs

Changhao Li^{1*}, Yuchen Zhuang^{1*}, Rushi Qiang¹, Haotian Sun¹ , Hanjun Dai^{2,3}, Chao Zhang¹, Bo Dai^{1,3}

* Equal Contribution, ¹Georgia Institute of Technology, ²Precur AI, ³Google DeepMind

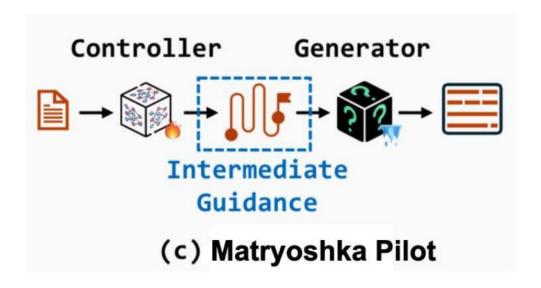


Motivation

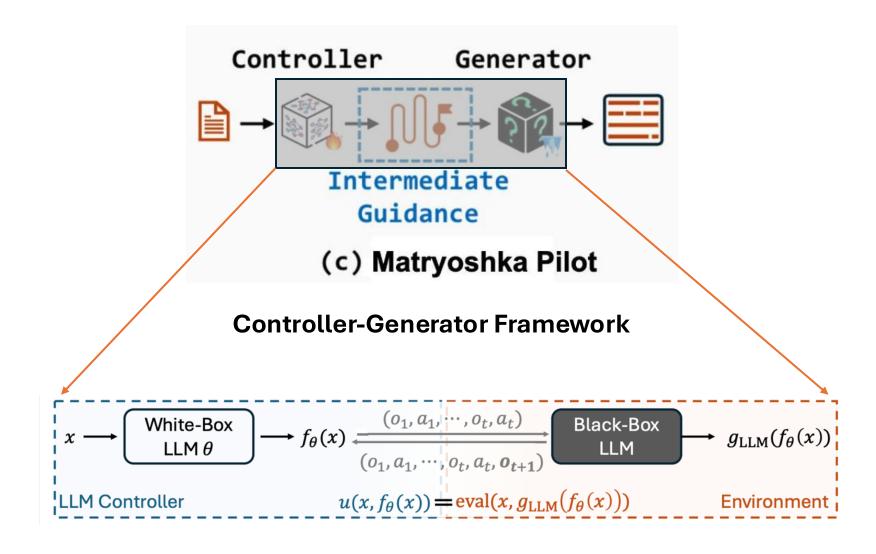

Matryoshka Pilot Experiment

How to improve black-box LLM performance?

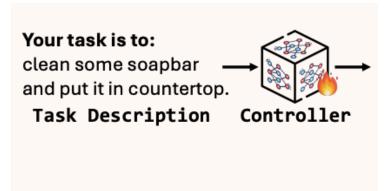
- Chain-of-Thought [Wei et al., 2023]
- Least-to-Most [Zhou et al., 2022]
- AdaPlanner [Sun et al., 2023]


• • •

- Tree-of-Thoughts [Yao et al., 2023]
- RAP [Hao et al., 2023]
- Bbox-adapter [Sun et al., 2024]


• • •

How to improve black-box LLM performance?


Controller-Generator Framework

How to improve black-box LLM performance?

Motivation Matryoshka Pilot Experiment

Planning (AlfWorld): Text-based Virtual Household Environment

Motivation

Matryoshka Pilot

Experiment

Planning (AlfWorld): Text-based Virtual Household Environment

Your task is to:

clean some soapbar and put it in countertop.

Task Description Co

Controller

General plan: I need to get a list of receptacles to find the soapbar, take the soapbar to a sinkbasin, clean it, and put it in a countertop.

[Step 1] get a list of receptacles where the soapbar is likely to appear.

[Step 2]

Task Decomposition

Motivation Matryoshka Pilot Experiment

Planning (AlfWorld): Text-based Virtual Household Environment

Your task is to:
clean some soapbar

and put it in countertop.

Task Description Controller

General plan: I need to get a list of receptacles to find the soapbar, take the soapbar to a sinkbasin, clean it, and put it in a countertop.

[Step 1] get a list of receptacles where the soapbar is likely to appear.

[Step 2]

Task Decomposition

Motivation
Matryoshka Pilot
Experiment

Planning (AlfWorld): Text-based Virtual Household Environment

Your task is to:

clean some soapbar - and put it in countertop.

Task Description Co

Controller

General plan: I need to get a list of receptacles to find the soapbar, take the soapbar to a sinkbasin, clean it, and put it in a countertop.

[Step 1] get a list of receptacles where the soapbar is likely to appear.

[Step 2]

Task Decomposition


```
def solution(agent, start_from=1):
    # General plan: .....
    if start_from <= 1:
        # [Step 1] ......
        answer = ask('.....')
        recep_to_check = literal_eval(answer)
        .....
    Generation</pre>
```

Execution

How to improve intermediate guidance?

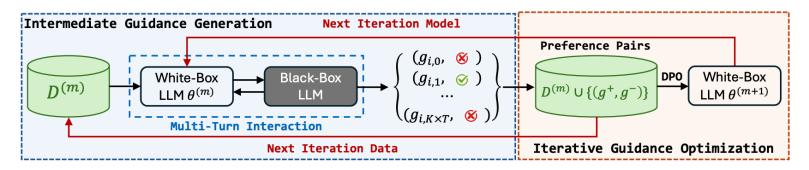


Figure 4: Overview of iterative guidance optimization. By iteratively updating both the model and the reference policy, M-Pilot progressively refines its intermediate guidance.

Iterative Guidance Optimization

Conceptualizing black-box LLM as environment

Motivation Matryoshka Pilot

Experiment

 Iterative Guidance Optimization + Controller-Generator Framework Enhances Black-box LLM performance across diverse tasks

$\overline{\text{Dataset}} \left(\rightarrow \right)$	LaM	P-1	LaM	P-2N	LaMl	P-2M	Lal	MP-3		LaMP	-4
$\mathbf{Method}\ (\downarrow)$	Acc. ↑	F-1 ↑	Acc. ↑	F-1 ↑	Acc. ↑	F-1 ↑	MAE↓	RMSE ↓	R-1 ↑	R-L↑	BLEU ↑
gpt-4o-mini	0.514	0.513	0.655	0.473	0.413	0.325	0.371	0.673	0.132	0.116	0.992
RAG (k=1) [34]	0.626	0.624	0.733	0.539	0.444	0.378	0.311	0.631	0.141	0.126	1.296
RAG (k=4) [34]	0.632	0.632	0.792	0.611	0.502	0.430	0.272	0.579	0.161	0.146	2.953
PAG [32]	0.624	0.624	0.775	0.559	0.496	0.443	0.316	0.645	0.143	0.130	1.968
M-Pilot	0.640	0.639	0.823	0.607	0.527	0.465	0.277	0.581	0.174	0.160	4.298
w/o IDPO	0.611	0.611	0.807	0.575	0.496	0.432	0.311	0.636	0.131	0.120	1.341

LaMP with Gpt-4o-mini as Black-Box Generator.

Dataset (\rightarrow)	LaMP-1		LaMP-2N		LaMP-2M		LaMP-3		LaMP-4		
Method (\downarrow)	Acc. ↑	F-1 ↑	Acc. ↑	F-1 ↑	Acc. ↑	F-1 ↑	MAE ↓	RMSE ↓	R-1 ↑	R-L↑	BLEU ↑
M-Pilot (4o-mini)	0.640	0.639	0.823	0.607	0.527	0.465	0.277	0.581	0.174	0.160	4.298
gpt-3.5-turbo	0.590	0.589	0.790	0.594	0.399	0.325	0.357	0.693	0.166	0.150	3.433
Plug-and-play (gpt-3.5)	0.594	0.593	0.798	0.609	0.469	0.412	0.286	0.599	0.176	0.161	4.222
w/o IDPO (gpt-3.5)	0.585	0.585	0.790	0.608	0.472	0.425	0.334	0.670	0.160	0.147	3.015
gemini-1.5-flash	0.518	0.510	0.700	0.498	0.368	0.279	0.546	0.825	0.135	0.113	1.494
Plug-and-play (gemini)	0.573	0.565	0.825	0.615	0.504	0.418	0.298	0.614	0.183	0.170	5.002
w/o IDPO (gemini)	0.568	0.561	0.811	0.602	0.505	0.411	0.365	0.715	0.164	0.150	3.439

Plug-and-play results of *GPT-3.5-turbo* and *Gemini-1.5-flash* as Black-Box Generators on LaMP

$Methods (\downarrow) Tasks (\rightarrow)$	Pick	Clean	Heat	Cool	Exam	Pick2	All
BUTLER [39]	46.00	39.00	74.00	100.00	22.00	24.00	37.00
ReAct [55]	37.50	64.52	69.57	42.86	38.89	17.65	47.76
Reflexion [38]	50.00	41.94	65.22	52.38	66.67	47.06	52.99
AdaPlanner [41]	100.00	93.55	78.26	95.24	66.67	88.24	88.06
M-Pilot	100.00	93.55	100.00	95.24	100.00	88.24	96.27
w/o 2 nd -round IDPO	100.00	93.55	100.00	100.00	83.33	88.24	94.78
w/o 1st, 2nd-round IDPO	100.00	93.55	86.96	95.24	55.56	88.24	88.06
w/o Guidance Optimization	100.00	93.55	91.30	85.71	11.11	88.24	81.34

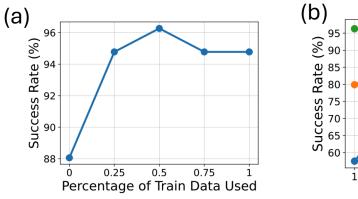
AlfWorld with *Gpt-3.5-turbo* as Black-Box Generator.

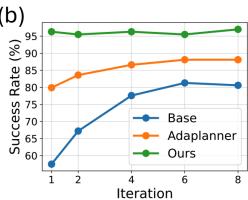
Dataset (\rightarrow)	GSN	18K	GSM-HARD		
Method (↓)	gpt-3.5	4o-mini	gpt-3.5	4o-mini	
CoT	0.809	0.932	0.406	0.500	
Least-to-Most	0.811	0.908	0.425	0.498	
PAL	0.802	0.920	0.638	0.748	
PAL _{Self-Debug}	0.864	0.943	0.701	0.774	
M-Pilot	0.931	0.964	0.761	0.801	
w/o IDPO	0.896	0.954	0.729	0.780	

GSM with *Gpt-3.5-turbo / GPT-4o-mini* as Black-Box Generator.

MATH500 with *Gpt-3.5-turbo* as Black-Box Generator.

Motivation Matryoshka Pilot


Experiment


 Matryoshka Pilot demonstrates strong efficiency in both cost and sample usage.

(a)			
` ,	Method	API cost (\$)	Task Performance
	M-Pilot	0.818	97.8
	Adaplanner [41] (w/o controller)	1.151	88.8

(b)									
(10)	Method	API cost (\$)	Task Performance						
	M-Pilot	1.740	93.1						
	Self-Consistency [49] (w/o controller)	4.946	81.3						

Comparison of cost and task performance on (a) AlfWorld and (b) GSM8K

Success rate (%) of Matryoshka Pilot versus (a) training data size and (b) number of iteration loops

Thanks!

Matryoshka Pilot: Learning to Drive Black-Box LLMs with LLMs

Changhao Li^{1*}, Yuchen Zhuang^{1*}, Rushi Qiang¹, Haotian Sun¹ , Hanjun Dai², Chao Zhang¹, Bo Dai¹

* Equal Contribution, ¹Georgia Institute of Technology, ²Precur Al

